COVID-19 infection data encode a dynamic reproduction number in response to policy decisions with secondary wave implications
- PMID: 34035322
- PMCID: PMC8149655
- DOI: 10.1038/s41598-021-90227-1
COVID-19 infection data encode a dynamic reproduction number in response to policy decisions with secondary wave implications
Abstract
The SARS-CoV-2 virus is responsible for the novel coronavirus disease 2019 (COVID-19), which has spread to populations throughout the continental United States. Most state and local governments have adopted some level of "social distancing" policy, but infections have continued to spread despite these efforts. Absent a vaccine, authorities have few other tools by which to mitigate further spread of the virus. This begs the question of how effective social policy really is at reducing new infections that, left alone, could potentially overwhelm the existing hospitalization capacity of many states. We developed a mathematical model that captures correlations between some state-level "social distancing" policies and infection kinetics for all U.S. states, and use it to illustrate the link between social policy decisions, disease dynamics, and an effective reproduction number that changes over time, for case studies of Massachusetts, New Jersey, and Washington states. In general, our findings indicate that the potential for second waves of infection, which result after reopening states without an increase to immunity, can be mitigated by a return of social distancing policies as soon as possible after the waves are detected.
Conflict of interest statement
The authors declare no competing interests.
Figures
References
-
- Patel A, Jernigan DB. 2019-nCoV CDC Response Team, Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak—United States, December 31, 2019-February 4, 2020 (Reprinted from Recomm Rep, vol 68, 2019) Am. J. Transplant. 2020;20:889–895. doi: 10.1111/ajt.15805. - DOI - PMC - PubMed
-
- Pei S, Shaman J. Initial Simulation of SARS-CoV2 spread and intervention effects in the Continental US. MedRxiv. 2020 doi: 10.1101/2020.03.21.20040303. - DOI
-
- IHME COVID-19 Health Service Utilization Forecasting Team. Murray CJL. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days, and deaths by US State in the next 4 months. MedRxiv. 2020 doi: 10.1101/2020.03.27.20043752. - DOI
-
- U.S. Army Corps of Engineers, Alternate Care Sites (ACS) (2020). https://www.usace.army.mil/coronavirus/alternate-care-sites/ (Accessed 14 July 2020).
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
