Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug;70(7):992-1000.

Mechanical stress and morphogenetic endochondral ossification of the sternum

Affiliations
  • PMID: 3403589

Mechanical stress and morphogenetic endochondral ossification of the sternum

M Wong et al. J Bone Joint Surg Am. 1988 Aug.

Abstract

The possible role of mechanical stress in determining the patterns of endochondral ossification in skeletal anlages was explored using stress-analysis computer models of developing human sterna. It has been hypothesized previously that the normal sequence of proliferation, maturation, degeneration, and ossification of cartilage is accelerated in regions of high cyclic octahedral shear stress and inhibited in regions of intermittent compressive-hydrostatic (dilatational) stress. This hypothesis was investigated using two-dimensional, all-cartilage, plane-stress finite-element models of the three basic shapes of human sterna that were identified by Ashley. A mathematical criterion, which combined the opposing influences of the shear and dilatational stresses into a single net stimulus for ossification, was used successfully to simulate the three basic patterns of sternal endochondral ossification that were previously documented. Our findings support the view that mechanical forces may strongly influence skeletal morphogenesis, growth, and development, beginning at a very early stage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources