Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 1;81(15):4014-4026.
doi: 10.1158/0008-5472.CAN-20-4090. Epub 2021 May 26.

Gut Microbiota-Derived Short-Chain Fatty Acids Promote Prostate Cancer Growth via IGF1 Signaling

Affiliations

Gut Microbiota-Derived Short-Chain Fatty Acids Promote Prostate Cancer Growth via IGF1 Signaling

Makoto Matsushita et al. Cancer Res. .

Abstract

Excessive intake of animal fat and resultant obesity are major risk factors for prostate cancer. Because the composition of the gut microbiota is known to change with dietary composition and body type, we used prostate-specific Pten knockout mice as a prostate cancer model to investigate whether there is a gut microbiota-mediated connection between animal fat intake and prostate cancer. Oral administration of an antibiotic mixture (Abx) in prostate cancer-bearing mice fed a high-fat diet containing a large proportion of lard drastically altered the composition of the gut microbiota including Rikenellaceae and Clostridiales, inhibited prostate cancer cell proliferation, and reduced prostate Igf1 expression and circulating insulin-like growth factor-1 (IGF1) levels. In prostate cancer tissue, MAPK and PI3K activities, both downstream of the IGF1 receptor, were suppressed by Abx administration. IGF1 directly promoted the proliferation of prostate cancer cell lines DU145 and 22Rv1 in vitro. Abx administration also reduced fecal levels of short-chain fatty acids (SCFA) produced by intestinal bacteria. Supplementation with SCFAs promoted tumor growth by increasing IGF1 levels. In humans, IGF1 was found to be highly expressed in prostate cancer tissue from obese patients. In conclusion, IGF1 production stimulated by SCFAs from gut microbes influences the growth of prostate cancer via activating local prostate MAPK and PI3K signaling, indicating the existence of a gut microbiota-IGF1-prostate axis. Disrupting this axis by modulating the gut microbiota may aid in prostate cancer prevention and treatment. SIGNIFICANCE: These results suggest that intestinal bacteria, acting through short-chain fatty acids, regulate systemic and local prostate IGF1 in the host, which can promote proliferation of prostate cancer cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
    1. Matsushita M, Fujita K, Nonomura N. Influence of diet and nutrition on prostate cancer. Int J Mol Sci. 2020;21:1447.
    1. Hayashi T, Fujita K, Nojima S, Hayashi Y, Nakano K, Ishizuya Y, et al. High-fat diet-induced inflammation accelerates prostate cancer growth via IL6 signaling. Clin Cancer Res. 2018;24:4309–18.
    1. Chang SN, Han J, Abdelkader TS, Kim TH, Lee JM, Song J, et al. High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice. Prostate. 2014;74:1266–77.
    1. Akinsete JA, Ion G, Witte TR, Hardman WE. Consumption of high ω-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice. Carcinogenesis. 2012;33:140–8.

Publication types

Substances