Perovskite-type superlattices from lead halide perovskite nanocubes
- PMID: 34040208
- DOI: 10.1038/s41586-021-03492-5
Perovskite-type superlattices from lead halide perovskite nanocubes
Abstract
Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra1-3, their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes4,5, and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices6. Caesium lead halide perovskite nanocrystals7-9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons10, slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines11,12. So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals13. Here we present perovskite-type (ABO3) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe3O4 or NaGdF4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO3 superlattices, as well as the binary NaCl and AlB2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr3 nanocubes. They also exhibit superfluorescence-a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures.
Comment in
-
Nanocrystals form a superfluorescent lattice mimicking the atomic structure of perovskite materials.Nature. 2021 May;593(7860):513-514. doi: 10.1038/d41586-021-01331-1. Nature. 2021. PMID: 34040205 No abstract available.
Similar articles
-
Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes.ACS Nano. 2022 May 24;16(5):7210-7232. doi: 10.1021/acsnano.1c10702. Epub 2022 Apr 6. ACS Nano. 2022. PMID: 35385663 Free PMC article.
-
Shape-Directed Co-Assembly of Lead Halide Perovskite Nanocubes with Dielectric Nanodisks into Binary Nanocrystal Superlattices.ACS Nano. 2021 Oct 26;15(10):16488-16500. doi: 10.1021/acsnano.1c06047. Epub 2021 Sep 22. ACS Nano. 2021. PMID: 34549582 Free PMC article.
-
Superfluorescence from lead halide perovskite quantum dot superlattices.Nature. 2018 Nov;563(7733):671-675. doi: 10.1038/s41586-018-0683-0. Epub 2018 Nov 7. Nature. 2018. PMID: 30405237
-
Metal-Halide Perovskite Nanocrystal Superlattice: Self-Assembly and Optical Fingerprints.Adv Mater. 2023 Apr;35(16):e2209279. doi: 10.1002/adma.202209279. Epub 2023 Feb 20. Adv Mater. 2023. PMID: 36738101 Review.
-
Perovskite nanocrystal superlattices: self-assembly, collective behavior, and applications.Chem Commun (Camb). 2023 May 2;59(36):5365-5374. doi: 10.1039/d2cc06534g. Chem Commun (Camb). 2023. PMID: 37070699 Review.
Cited by
-
Ultrafast upconversion superfluorescence with a sub-2.5 ns lifetime at room temperature.Nat Commun. 2024 Nov 14;15(1):9880. doi: 10.1038/s41467-024-54314-x. Nat Commun. 2024. PMID: 39543192 Free PMC article.
-
Perovskite Nanocrystal Self-Assemblies in 3D Hollow Templates.ACS Nano. 2025 Feb 25;19(7):6748-6757. doi: 10.1021/acsnano.4c07819. Epub 2025 Jan 13. ACS Nano. 2025. PMID: 39804801 Free PMC article.
-
Overcoming lattice mismatch for core-shell NaGdF4@CsPbBr3 heterostructures.Nat Commun. 2025 Apr 24;16(1):3891. doi: 10.1038/s41467-025-59315-y. Nat Commun. 2025. PMID: 40274820 Free PMC article.
-
Persistent enhancement of exciton diffusivity in CsPbBr3 nanocrystal solids.Sci Adv. 2024 Feb 23;10(8):eadj2630. doi: 10.1126/sciadv.adj2630. Epub 2024 Feb 21. Sci Adv. 2024. PMID: 38381813 Free PMC article.
-
Cesium Lead Halide Perovskite Nanocrystals Assembled in Metal-Organic Frameworks for Stable Blue Light Emitting Diodes.Adv Sci (Weinh). 2022 May;9(14):e2105850. doi: 10.1002/advs.202105850. Epub 2022 Mar 15. Adv Sci (Weinh). 2022. PMID: 35289103 Free PMC article.
References
-
- Scheibe, G. Über den mechanismus der sensibilisierung photochemischer reaktionen durch farbstoffe, insbesondere der assimilation. Naturwissenschaften 25, 795 (1937). - DOI
-
- Franck, J. & Teller, E. Migration and photochemical action of excitation energy in crystals. J. Chem. Phys. 6, 861–872 (1938). - DOI
-
- Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017). - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous