Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 17:16:1369-1379.
doi: 10.2147/COPD.S309041. eCollection 2021.

Aerobic Exercise Alleviates Inflammation, Oxidative Stress, and Apoptosis in Mice with Chronic Obstructive Pulmonary Disease

Affiliations

Aerobic Exercise Alleviates Inflammation, Oxidative Stress, and Apoptosis in Mice with Chronic Obstructive Pulmonary Disease

Xishuai Wang et al. Int J Chron Obstruct Pulmon Dis. .

Erratum in

Abstract

Background: Chronic inflammation, oxidative stress, and apoptosis play critical roles in chronic obstructive pulmonary disease (COPD) pathogenesis. Here, we attempted to determine whether aerobic exercise (AE) could improve COPD by counteracting the COPD-associated inflammatory response, oxidative stress, and apoptosis in mice.

Methods: Thirty male ICR mice were assigned into one of three groups: control (Con), COPD, and COPD + AE. COPD was simulated by intratracheal injection of lipopolysaccharide (LPS) for 4 weeks. Low-intensity AE was performed for 4 weeks. Bronchoalveolar lavage fluid (BALF) cell counts and the levels of inflammatory cytokine in BALF and serum were detected. Hematoxylin and eosin (HE), Masson trichrome, and Sirius Red staining as well as terminal deoxynucleotidyl transferase dUTP nick end labeling were performed to identify the degree of pulmonary emphysema, bronchial mucus cell hyperplasia, pulmonary fibrosis, and cell apoptosis. Oxidative stress parameters were measured. Furthermore, gene expression levels for the CXCL1, IL-1β, IL-10, IL-17, matrix metalloproteinase (MMP)9, TGF-β, TNF-α, and silent information regulator (sirt)1 were detected in mice lung tissues.

Results: AE improved LPS-induced emphysema, pulmonary fibrosis, bronchial mucus cell hyperplasia, bronchoconstriction, and cell apoptosis. AE prevented an LPS-induced increase in the total cell, neutrophil, and macrophage counts. AE decreased malondialdehyde (MDA) and myeloperoxidase (MPO) levels but increased glutathione (GSH) and superoxide dismutase (SOD) levels. AE decreased BALF levels of IL-1β, TNF-α, and TGF-β but increased BALF IL-10 levels. AE suppressed the gene expression levels of pro-inflammatory factors CXCL1, IL-1β, IL-17, and TNF-α and profibrotic factors MMP-9 and TGF-β but activated those of anti-inflammatory factor IL-10 and lung-protective factor sirt1.

Conclusion: AE is a potential therapeutic approach for COPD. AE improved emphysema, bronchial mucus cell hyperplasia, and pulmonary fibrosis in mice with COPD by alleviating the inflammatory response, oxidative stress injury, and cell apoptosis as well as activating sirt1.

Keywords: COPD; emphysema; exercise; oxidative stress injury; pulmonary fibrosis; pulmonary inflammation.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest in this work, and the manuscript has been approved by all authors for publication.

Figures

Figure 1
Figure 1
Detection of emphysema.
Figure 2
Figure 2
Detection of pulmonary fibrosis.
Figure 3
Figure 3
Detection of airway fibrosis.
Figure 4
Figure 4
Detection of gene expression levels in lung tissue.
Figure 5
Figure 5
Detection of cell apoptosis.
Figure 6
Figure 6
Detection of oxidative stress injury.
Figure 7
Figure 7
Detection of bronchial mucus cell hyperplasia and bronchoconstriction.

Similar articles

Cited by

References

    1. Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389(10082):1931–1940. doi:10.1016/S0140-6736(17)31222-9 - DOI - PubMed
    1. Labaki WW, Rosenberg SR. Chronic obstructive pulmonary disease. Ann Intern Med. 2020;173(3):ITC17–ITC32. doi:10.7326/AITC202008040 - DOI - PubMed
    1. Pauwels RA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet. 2004;364(9434):613–620. doi:10.1016/S0140-6736(04)16855-4 - DOI - PubMed
    1. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–192. doi:10.1038/nri2254 - DOI - PubMed
    1. Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis. 2015;2(10):261–276. doi:10.2147/COPD.S42414 - DOI - PMC - PubMed