Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 23;11(1):241-247.
doi: 10.1039/c9sc04303a.

Isothiourea-catalysed enantioselective Michael addition of N-heterocyclic pronucleophiles to α,β-unsaturated aryl esters

Affiliations

Isothiourea-catalysed enantioselective Michael addition of N-heterocyclic pronucleophiles to α,β-unsaturated aryl esters

Chang Shu et al. Chem Sci. .

Abstract

The isothiourea-catalysed enantioselective Michael addition of 3-aryloxindole and 4-substituted-dihydropyrazol-3-one pronucleophiles to α,β-unsaturated p-nitrophenyl esters is reported. This process generates products containing two contiguous stereocentres, one quaternary, in good yields and excellent enantioselectivities (>30 examples, up to > 95 : 5 dr and 99 : 1 er). This protocol harnesses the multifunctional ability of p-nitrophenoxide to promote effective catalysis. In contrast to previous methodologies using tertiary amine Lewis bases, in which the pronucleophile was used as the solvent, this work allows bespoke pronucleophiles to be used in stoichiometric quantities.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Enantioselective Michael addition to α,β-unsaturated esters.
Fig. 1
Fig. 1. Screening of pronucleophiles. Isolated overall yields given; dr determined by 1H NMR spectroscopic analysis of crude mixture; er determined by chiral HPLC analysis of purified products and refers to er of major diastereoisomer.
Fig. 2
Fig. 2. (A–E) Scope and limitations: 3-aryloxindole pronucleophiles and α,β-unsaturated aryl esters.a Isolated overall yields given; dr determined by 1H NMR spectroscopic analysis of crude mixture; er determined by chiral HPLC analysis.b Reaction carried out at −40 °C.
Scheme 2
Scheme 2. Gram-scale experiment.
Scheme 3
Scheme 3. Proposed mechanism for the reaction.

Similar articles

Cited by

References

    1. For selected reviews see:

    2. d'Angelo J. Desmaële D. Dumas F. Guingant A. Tetrahedron: Asymmetry. 1992;3:459. doi: 10.1016/S0957-4166(00)80251-7. - DOI
    3. Jha S. C. Joshi N. N. ARKIVOC. 2002:167.
    4. Bhanja C. Jena S. Nayak S. Mohapatra S. Beilstein J. Org. Chem. 2012;8:1668. - PMC - PubMed
    5. Zhang Y. Wang W. Catal. Sci. Technol. 2012;2:42. doi: 10.1039/C1CY00334H. - DOI
    6. Heravi M. M. Hajiabbasi P. Hamidi H. Curr. Org. Chem. 2014;18:489. doi: 10.2174/13852728113176660149. - DOI
    7. Nayak S. Chakroborty S. Bhakta S. Panda P. Mohapatra S. Res. Chem. Intermed. 2016;42:2731. doi: 10.1007/s11164-015-2193-0. - DOI
    8. Hui C. Pu F. Xu J. Chem.–Eur. J. 2017;23:4023. doi: 10.1002/chem.201604110. - DOI - PubMed
    9. Yumiko S. Mini-Rev. Org. Chem. 2018;15:236. doi: 10.2174/1570193X15666171211165344. - DOI - PMC - PubMed
    1. For select reviews see:

    2. Krause N. Hoffmann-Röder A. Synthesis. 2001:171. doi: 10.1055/s-2001-10803. - DOI
    3. Christoffers J. Koripelly G. Rosiak A. Rössle M. Synthesis. 2007:1279. doi: 10.1055/s-2007-966005. - DOI
    1. For selected examples see:

    2. Xie J.-W. Yue L. Xue D. Ma X.-L. Chen Y.-C. Wu Y. Zhu J. Deng J.-G. Chem. Commun. 2006:1563. doi: 10.1039/B600647G. - DOI - PubMed
    3. Patil M. P. Sunoj R. B. Chem. Asian J. 2009;4:714. doi: 10.1002/asia.200800351. - DOI - PubMed
    4. Huang X. Wen Y.-H. Zhou F.-T. Chen C. Xu D.-C. Xie J.-W. Tetrahedron Lett. 2010;51:6637. doi: 10.1016/j.tetlet.2010.10.055. - DOI
    5. Mager I. Zeitler K. Org. Lett. 2010;12:1480. doi: 10.1021/ol100166z. - DOI - PubMed
    6. Mao Z. Jia Y. Li W. Wang R. J. Org. Chem. 2010;75:7428. doi: 10.1021/jo101188m. - DOI - PubMed
    7. Wang J. F. Qi C. Ge Z. M. Cheng T. M. Li R. T. Chem. Commun. 2010;46:2124. doi: 10.1039/B923925A. - DOI - PubMed
    8. Wang J. F. Wang X. Ge Z. M. Cheng T. M. Li R. T. Chem. Commun. 2010;46:1751. doi: 10.1039/B915852A. - DOI - PubMed
    9. Patora-Komisarska K. Benohoud M. Ishikawa H. Seebach D. Hayashi Y. Helv. Chim. Acta. 2011;94:719. doi: 10.1002/hlca.201100122. - DOI
    10. Quintard A. Alexakis A. Chem. Commun. 2011;47:7212. doi: 10.1039/C1CC11967B. - DOI - PubMed
    11. Vera S. Liu Y. K. Marigo M. Escudero-Adan E. C. Melchiorre P. Synlett. 2011:489.
    12. Lu N. Meng L. Chen D. Zhang G. J. Phys. Chem. A. 2012;116:670. doi: 10.1021/jp209308a. - DOI - PubMed
    13. Yoon H. S. Ho X. H. Jang J. Lee H. J. Kim S. J. Jang H. Y. Org. Lett. 2012;14:3272. doi: 10.1021/ol3011858. - DOI - PubMed
    14. Gu Y. Wang Y. Yu T. Y. Liang Y. M. Xu P. F. Angew. Chem., Int. Ed. 2014;53:14128. doi: 10.1002/anie.201406786. - DOI - PubMed
    15. Lagoutte R. Besnard C. Alexakis A. Eur. J. Org. Chem. 2016:4372. doi: 10.1002/ejoc.201600707. - DOI
    16. Ueda A. Umeno T. Doi M. Akagawa K. Kudo K. Tanaka M. J. Org. Chem. 2016;81:6343. doi: 10.1021/acs.joc.6b00982. - DOI - PubMed
    17. Jia Z. L. Wang Y. Zhao C. G. Zhang X. H. Xu P. F. Org. Lett. 2017;19:2130. doi: 10.1021/acs.orglett.7b00767. - DOI - PubMed
    18. Larnaud F. Sulpizi A. Haggman N. O. Hughes J. M. E. Dewez D. F. Gleason J. L. Eur. J. Org. Chem. 2017:2637. doi: 10.1002/ejoc.201700469. - DOI
    19. Wang Z.-X. Zhou Z. Xiao W. Ouyang Q. Du W. Chen Y.-C. Chem.–Eur. J. 2017;23:10678. doi: 10.1002/chem.201702183. - DOI - PubMed
    20. Mondal B. Balha M. Pan S. C. Asian J. Org. Chem. 2018;7:1788. doi: 10.1002/ajoc.201800316. - DOI
    21. Swiderek K. Nodling A. R. Tsai Y. H. Luk L. Y. P. Moliner V. J. Phys. Chem. A. 2018;122:451. doi: 10.1021/acs.jpca.7b11803. - DOI - PMC - PubMed
    1. For an excellent overview see:

    2. Doyle A. G. Jacobsen E. N. Chem. Rev. 2007;107:5713. doi: 10.1021/cr068373r. - DOI - PubMed
    3. . For select examples see:

    4. Kobayashi Y. Taniguchi Y. Hayama N. Inokuma T. Takemoto Y. Angew. Chem., Int. Ed. 2013;52:11114. doi: 10.1002/anie.201305492. - DOI - PubMed
    5. Inokuma T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc. 2006;128:9413. doi: 10.1021/ja061364f. - DOI - PubMed
    1. For selected seminal examples see:

    2. Kobayashi S. Suda S. Yamada M. Mukaiyama T. Chem. Lett. 1994:97. doi: 10.1246/cl.1994.97. - DOI
    3. Bernardi A. Karamfilova K. Sanguinetti S. Scolastico C. Tetrahedron. 1997;53:13009. doi: 10.1016/S0040-4020(97)00825-9. - DOI
    4. Kitajima H. Katsuki T. Synlett. 1997:568. doi: 10.1055/s-1997-3235. - DOI
    5. Evans D. A. Rovis T. Kozlowski M. C. Tedrow J. S. J. Am. Chem. Soc. 1999;121:1994. doi: 10.1021/ja983864h. - DOI
    6. Evans D. A. Willis M. C. Johnston J. N. Org. Lett. 1999;1:865. doi: 10.1021/ol9901570. - DOI - PubMed
    7. Evans D. A. Scheidt K. Johnston J. N. Willis M. C. J. Am. Chem. Soc. 2001;123:4480. doi: 10.1021/ja010302g. - DOI - PubMed