Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov;32(11):2289-2299.
doi: 10.1007/s00198-021-06013-2. Epub 2021 May 26.

Predictive ability of novel volumetric and geometric indices derived from dual-energy X-ray absorptiometric images of the proximal femur for hip fracture compared with conventional areal bone mineral density: the Japanese Population-based Osteoporosis (JPOS) Cohort Study

Affiliations

Predictive ability of novel volumetric and geometric indices derived from dual-energy X-ray absorptiometric images of the proximal femur for hip fracture compared with conventional areal bone mineral density: the Japanese Population-based Osteoporosis (JPOS) Cohort Study

M Iki et al. Osteoporos Int. 2021 Nov.

Abstract

Areal BMD (aBMD) from DXA is not a sufficiently accurate predictor of fracture. Novel volumetric BMD derived from 3D modeling of the hip from DXA images significantly improved the predictive ability for hip fracture relative to aBMD at the femoral neck, but not aBMD at the total hip.

Introduction: To clarify whether volumetric and geometric indices derived from novel three-dimensional (3D) modeling of the hip using dual-energy X-ray absorptiometric (DXA) images improve hip fracture prediction relative to areal bone mineral density (aBMD).

Methods: We examined 1331 women who had completed the baseline survey and at least one follow-up survey over 20 years (age 40-79 years at baseline). Each survey included aBMD measurement at the hip by DXA. Volumetric and geometric indices of the hip at baseline and the 10-year follow-up were estimated from DXA images using a 3D modeling algorithm. Incident hip fractures during the 20-year follow-up period were identified through self-report. Cox proportional hazards regression models allowing for repeated measurements of predictors and outcomes were constructed, and their predictive ability for hip fracture was evaluated using areas under receiver operating characteristic curves (AUCs) and net reclassification improvement (NRI) over aBMD at the femoral neck (FN) and total hip (TH) as references.

Results: During a median follow-up of 19.8 years, 68 incident hip fractures were identified (2.22/1000 person-years). A significantly larger AUC of trabecular volumetric BMD (vBMD) at the total hip (AUC = 0.741), femoral neck (AUC = 0.748), and intertrochanter (AUC = 0.738) and significant NRI (0.177, 0.149, and 0.195, respectively) were observed compared with FN-aBMD (AUC = 0.701), but not TH-aBMD.

Conclusions: vBMD obtained from 3D modeling using routinely obtained hip DXA images significantly improved hip fracture risk prediction over conventional FN-aBMD, but not TH-aBMD.

Trial registration: The Japanese Population-Based Osteoporosis (JPOS) Cohort Study was retrospectively registered as UMIN000032869 in the UMIN Clinical Trials Registry on July 1, 2018.

Keywords: Areal bone mineral density; Dual-energy X-ray absorptiometry; Fracture risk assessment; Hip fracture; Three-dimensional modeling; Volumetric bone mineral density.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anonymous (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650. https://doi.org/10.1016/0002-9343(93)90218-e - DOI
    1. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O'Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194. https://doi.org/10.1359/jbmr.050304 - DOI - PubMed
    1. Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo JD (2011) In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J Bone Miner Res 26(4):881–893. https://doi.org/10.1002/jbmr.270 - DOI - PubMed
    1. Humbert L, Martelli Y, Fonolla R, Steghofer M, Di Gregorio S, Malouf J, Romera J, Barquero LM (2017) 3D-DXA: Assessing the femoral shape, the trabecular macrostructure and the cortex in 3D from DXA images. IEEE Trans Med Imaging 36(1):27–39. https://doi.org/10.1109/TMI.2016.2593346 - DOI - PubMed
    1. Clotet J, Martelli Y, Di Gregorio S, Del Rio Barquero LM, Humbert L (2018) Structural parameters of the proximal femur by 3-dimensional dual-energy X-ray absorptiometry software: comparison with quantitative computed tomography. J Clin Densitom 21(4):550–562. https://doi.org/10.1016/j.jocd.2017.05.002 - DOI - PubMed

LinkOut - more resources