Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 27:281:714-718.
doi: 10.3233/SHTI210265.

How to Identify Potential Candidates for HIV Pre-Exposure Prophylaxis: An AI Algorithm Reusing Real-World Hospital Data

Affiliations

How to Identify Potential Candidates for HIV Pre-Exposure Prophylaxis: An AI Algorithm Reusing Real-World Hospital Data

Jean-Charles Duthe et al. Stud Health Technol Inform. .

Abstract

HIV Pre-Exposure Prophylaxis (PrEP) is effective in Men who have Sex with Men (MSM), and is reimbursed by the social security in France. Yet, PrEP is underused due to the difficulty to identify people at risk of HIV infection outside the "sexual health" care path. We developed and validated an automated algorithm that re-uses Electronic Health Record (EHR) data available in eHOP, the Clinical Data Warehouse of Rennes University Hospital (France). Using machine learning methods, we developed five models to predict incident HIV infections with 162 variables that might be exploited to predict HIV risk using EHR data. We divided patients aged 18 or more having at least one hospital admission between 2013 and 2019 in two groups: cases (patients with known HIV infection in the study period) and controls (patients without known HIV infection and no PrEP in the study period, but with at least one HIV risk factor). Among the 624,708 admissions, we selected 156 cases (incident HIV infection) and 761 controls. The best performing model for identifying incident HIV infections was the combined model (LASSO, Random Forest, and Generalized Linear Model): AUC = 0.88 (95% CI: 0.8143-0.9619), specificity = 0.887, and sensitivity = 0.733 using the test dataset. The algorithm seems to efficiently identify patients at risk of HIV infection.

Keywords: HIV prevention; Pre-exposure prophylaxis (PrEP); clinical informatics; machine learning; predictive analytics; risk reduction practices; sexual health.

PubMed Disclaimer

Substances

LinkOut - more resources