Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 17;6(51):eaay2627.
doi: 10.1126/scirobotics.aay2627.

Electronics-free pneumatic circuits for controlling soft-legged robots

Affiliations

Electronics-free pneumatic circuits for controlling soft-legged robots

Dylan Drotman et al. Sci Robot. .

Abstract

Pneumatically actuated soft robots have recently shown promise for their ability to adapt to their environment. Previously, these robots have been controlled with electromechanical components, such as valves and pumps, that are typically bulky and expensive. Here, we present an approach for controlling the gaits of soft-legged robots using simple pneumatic circuits without any electronic components. This approach produces locomotive gaits using ring oscillators composed of soft valves that generate oscillating signals analogous to biological central pattern generator neural circuits, which are acted upon by pneumatic logic components in response to sensor inputs. Our robot requires only a constant source of pressurized air to power both control and actuation systems. We demonstrate this approach by designing pneumatic control circuits to generate walking gaits for a soft-legged quadruped with three degrees of freedom per leg and to switch between gaits to control the direction of locomotion. In experiments, we controlled a basic walking gait using only three pneumatic memory elements (valves). With two oscillator circuits (seven valves), we were able to improve locomotion speed by 270%. Furthermore, with a pneumatic memory element we designed to mimic a double-pole double-throw switch, we demonstrated a control circuit that allowed the robot to select between gaits for omnidirectional locomotion and to respond to sensor input. This work represents a step toward fully autonomous, electronics-free walking robots for applications including low-cost robotics for entertainment and systems for operation in environments where electronics may not be suitable.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

LinkOut - more resources