Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 11:9:667369.
doi: 10.3389/fcell.2021.667369. eCollection 2021.

Plasma Extracellular Vesicle Size and Concentration Are Altered in Alzheimer's Disease, Dementia With Lewy Bodies, and Frontotemporal Dementia

Affiliations

Plasma Extracellular Vesicle Size and Concentration Are Altered in Alzheimer's Disease, Dementia With Lewy Bodies, and Frontotemporal Dementia

Antonio Longobardi et al. Front Cell Dev Biol. .

Abstract

Alzheimer's disease (AD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB) are the three major neurodegenerative dementias. In this study, we provide evidence that an alteration in extracellular vesicles (EVs) release is common across the three most common neurodegenerative dementias, AD, DLB, and FTD. Specifically, we analyzed plasma EVs in three groups of patients affected by AD, DLB, and FTD, and we found a significant reduction in EVs concentration and larger EVs size in all patient groups. We then investigated whether the loss of neurotrophic factors is also a common pathogenic mechanism among FTD, DLB, and AD, and if levels of neurotrophic factors might affect EVs release. Plasma levels of progranulin and cystatin C (CysC) were partially altered; however, taking together all variables significantly associated with the diagnostic groups only EVs size and concentration were able to distinguish patients from controls. The diagnostic performance of these two EVs parameters together (ratio) was high, with a sensitivity of 83.3% and a specificity of 86.7%, able to distinguish patients from controls but not to differentiate the different forms of dementias. Among the candidate neurotrophic factors, only CysC levels were associated with EVs concentration. Our study suggests that an alteration in the intercellular communication mediated by EVs might be a common molecular pathway underlying neurodegenerative dementias. The identification of shared disease mechanisms is of pivotal importance to develop treatments to delay disease progression. To this aim, further studies investigating plasma EVs size and concentration as early biomarkers of dementia are required.

Keywords: Alzheimer’s disease; biomarkers; dementia with Lewy bodies; extracellular vesicles; frontotemporal dementia; nanoparticle tracking analysis; plasma.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
EVs concentration and size in patient and control groups. (A) Representative spectra from NTA of CTRL (yellow), AD (green), DLB (orange), and FTD (red) plasma EVs. (B) Quantification of EVs concentration with NTA in CTRL, AD, DLB, and FTD plasma samples. A statistically significant decrease in EVs concentration was observed in the three pathological groups compared to controls. (C) Representation of EVs size measured with NTA in CTRL, AD, DLB, and FTD plasma samples. An increase in size was observed in AD, DLB, and FTD compared to CTRL samples. Average ± SEM; **p < 0.01, ***p < 0.001, one-way ANOVA with Bonferroni’s post test.
FIGURE 2
FIGURE 2
Classification tree. Subjects are classified on the basis of the most predictive variables, EVs size and concentration, among all the ones which resulted to be significantly associated with subject groups. CTRL, controls; PTS, patients; AverageSize, EVs size; AverageConcentration, EVs/ml.
FIGURE 3
FIGURE 3
(A) ROC curves for EVs concentration/size. The ratio of EVs concentration/size was used to evaluate the discrimination of PTS from CTRL; AUC CTRL vs. PTS 0.86 (black); CTRL vs. AD 0.84 (red); CTRL vs. DLB 0.89 (green); CTRL vs. FTD 0.84 (orange); AUC comparison with DeLong test, p > 0.436. (B) CysC levels and EVs concentration are negatively/positively associated with CTRL/PTS, respectively (std beta = –0.28; std beta = 0.31 respectively). CTRL, controls (green); PTS, patients (red).

References

    1. Agosta F., Dalla Libera D., Spinelli E. G., Finardi A., Canu E., Bergami A., et al. (2014). Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and Alzheimer disease. Ann. Neurol. 76 813–825. 10.1002/ana.24235 - DOI - PubMed
    1. Alvarez-Erviti L., Seow Y., Schapira A. H., Gardiner C., Sargent I. L., Wood M. J., et al. (2011). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42 360–367. 10.1016/j.nbd.2011.01.029 - DOI - PMC - PubMed
    1. Benussi L., Ciani M., Tonoli E., Morbin M., Palamara L., Albani D., et al. (2016). Loss of exosomes in progranulin-associated frontotemporal dementia. Neurobiol. Aging 40 41–49. 10.1016/j.neurobiolaging.2016.01.001 - DOI - PubMed
    1. Beyer K., Domingo-Sàbat M., Ariza A. (2009). Molecular pathology of Lewy body diseases. Int. J. Mol. Sci. 10 724–745. 10.3390/ijms10030724 - DOI - PMC - PubMed
    1. Brion J. P. (1998). Neurofibrillary tangles and Alzheimer’s disease. Eur. Neurol. 40 130–140. - PubMed

LinkOut - more resources