Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 28;11(1):99.
doi: 10.1186/s13578-021-00617-1.

Human pluripotent stem cell-derived brain organoids as in vitro models for studying neural disorders and cancer

Affiliations
Review

Human pluripotent stem cell-derived brain organoids as in vitro models for studying neural disorders and cancer

Juan Luo et al. Cell Biosci. .

Abstract

The sheer complexities of brain and resource limitation of human brain tissue greatly hamper our understanding of the brain disorders and cancers. Recently developed three-dimensional (3D) brain organoids (BOs) are self-organized and spontaneously differentiated from human pluripotent stem cells (hPSCs) in vitro, which exhibit similar features with cell type diversity, structural organization, and functional connectivity as the developing human brain. Based on these characteristics, hPSC-derived BOs (hPDBOs) provide new opportunities to recapitulate the complicated processes during brain development, neurodegenerative disorders, and brain cancers in vitro. In this review, we will provide an overview of existing BO models and summarize the applications of this technology in modeling the neural disorders and cancers. Furthermore, we will discuss the challenges associated with their use as in vitro models for disease modeling and the potential future direction.

Keywords: Brain organoids; Cancer; Human pluripotent stem cells; Neural disorders.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1
Development of brain organoid technologies: Timeline cartoons to indicate the milestones from isolation of m/hESCs to establishment of mature hPDBOs, including vascularized BOs, region-specific BOs and assembloids
Fig. 2
Fig. 2
Challenges of existing hPDBOs: 1. Limited reproducibility: attempt to develop homogenous hPDBOs by introducing new biomaterials or combining with microfabrication techniques; 2. Lack of vascular system: different attempts to realize organoid vascularization, including hPDBOs co-culture with endothelial cells, or co-differentiation with VEGF administration or co-overexpression with hETV2; 3. Deficiency of immune responses: attempt to develop microglia-containing brain organoids by co-culture of hPDBOs with microglial cells
Fig. 3
Fig. 3
Future perspectives in hPDBOs: The combinations of hPDBOs and innovative technologies, including cell reprogramming, genome-editing, 3D bioprinting, scRNA-seq, and biomaterials will greatly improve the brain organoid system, and which will facilitate us to model human brain development and disorders, and to perform drug discovery and personalized therapeutics in the future

Similar articles

Cited by

References

    1. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–348. doi: 10.1007/s11065-010-9148-4. - DOI - PMC - PubMed
    1. Karagiannis P, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev. 2019;99:79–114. doi: 10.1152/physrev.00039.2017. - DOI - PubMed
    1. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. - DOI - PubMed
    1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. - DOI - PubMed
    1. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. - DOI - PubMed

LinkOut - more resources