Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 22;6(17):11740-11749.
doi: 10.1021/acsomega.1c01083. eCollection 2021 May 4.

Substrate-Controlled Cu(OAc)2-Catalyzed Stereoselective Semi-Reduction of Alkynes with MeOH as the Hydrogen Source

Affiliations

Substrate-Controlled Cu(OAc)2-Catalyzed Stereoselective Semi-Reduction of Alkynes with MeOH as the Hydrogen Source

Jiuzhong Huang et al. ACS Omega. .

Abstract

A substrate-controlled stereoselective semi-reduction of alkynes with MeOH as the hydrogen source has been developed, and readily available Cu(OAc)2 (copper acetate) is utilized as an optimal catalyst. The detailed investigation of the mechanism revealed distinct catalytic processes for the (Z)- and (E)-alkenes, respectively. As a result, a diversity of alkynes (including terminal, internal alkynes etc.) were compatible under the mild reaction conditions. Furthermore, the high proportion of deuterium in Z-alkenes (up to 96%) was obtained using d 4-methanol as a solvent.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Stereodivergent Catalytic Transfer Hydrogenation (CTH) of Alkynes
Figure 1
Figure 1
Synthesis of deuterated (Z)-alkenes. Conditions: substrate 1 (0.3 mmol), anhydrous Cu(OAc)2 (10 mol %), 4,4′-bpy (10 mol %), B2pin2 (1.0 equiv), CD3OD (2.0 mL) under a N2 atmosphere at 60 °C for 18 h; Isolated yields. Unless otherwise noted, products Z/E > 20:1. The deuterium content was determined by 1H NMR.
Scheme 2
Scheme 2. Effect of Various Equivalents of B2pin2 for the Transformation of Possible Intermediates
Scheme 3
Scheme 3. Control Experiments
Scheme 4
Scheme 4. Proposed Mechanism

Similar articles

Cited by

References

    1. Fuchs M.; Fürstner A. trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A. Angew. Chem., Int. Ed. 2015, 54, 3978.10.1002/anie.201411618. - DOI - PMC - PubMed
    2. Oger C.; Balas L.; Durand T.; Galano J.-M. Are Alkyne Reductions Chemo-, Regio-, and Stereoselective Enough to Provide Pure (Z)-Olefins in Polyfunctionalized Bioactive Molecules?. Chem. Rev. 2013, 113, 1313.10.1021/cr3001753. - DOI - PubMed
    3. Cirla A.; Mann J. Combretastatins: From Natural Products to Drug Discovery. Nat. Prod. Rep. 2003, 20, 558.10.1039/b306797c. - DOI - PubMed
    4. Fürst R.; Zupkó I.; Berényi Á.; Ecker G. F.; Rinner U. Synthesis and Antitumor-evaluation of Cyclopropyl-Containing Combretastatin Analogs. Bioorg. Med. Chem. Lett. 2009, 19, 6948.10.1016/j.bmcl.2009.10.064. - DOI - PubMed
    1. Maryanoff B. E.; Reitz A. B. The Wittig Olefination Reaction and Modifications Involving Phosphoryl-stabilized Carbanions. Stereochemistry, Mechanism, and Selected Synthetic Aspects. Chem. Rev. 1989, 89, 863.10.1021/cr00094a007. - DOI
    2. Wadsworth W. S.; Emmons W. D. The Utility of Phosphonate Carbanions in Olefin Synthesis. J. Am. Chem. Soc. 1961, 83, 1733.10.1021/ja01468a042. - DOI
    3. Peterson D. J. Carbonyl Olefination Reaction Using Silyl-substituted Organometallic Compounds. J. Org. Chem. 1968, 33, 780.10.1021/jo01266a061. - DOI
    4. Keitz B. K.; Endo K.; Patel P. R.; Herbert M. B.; Grubbs R. H. Improved Ruthenium Catalysts for Z-Selective Olefin Metathesis. J. Am. Chem. Soc. 2012, 134, 693.10.1021/ja210225e. - DOI - PMC - PubMed
    5. Grubbs R. H.Handbook of Metathesis: Catalyst Development; Wiley-VCH Verlag, 2003.
    6. Trost B. M.; Ball Z. T.; Jöge T. A Chemoselective Reduction of Alkynes to (E)-Alkenes. J. Am. Chem. Soc. 2002, 124, 7922.10.1021/ja026457l. - DOI - PubMed
    7. Wang J.Stereoselective Alkene Synthesis; Springer-Verlag: Berlin, Heidelberg, 2012.
    1. Gorgas N.; Brünig J.; Stöger B.; Vanicek S.; Tilset M.; Veiros L. F.; Kirchner K. Efficient Z-Selective Semihydrogenation of Internal Alkynes Catalyzed by Cationic Iron(II) Hydride Complexes. J. Am. Chem. Soc. 2019, 141, 17452.10.1021/jacs.9b09907. - DOI - PubMed
    2. Chen C.; Huang Y.; Zhang Z.; Dong X.; Zhang X. Cobalt-catalyzed (Z)-Selective Semihydrogenation of Alkynes with Molecular Hydrogen. Chem. Commun. 2017, 53, 4612.10.1039/C7CC01228D. - DOI - PubMed
    3. Tokmic K.; Fout A. R. Alkyne Semihydrogenation with a Well-Defined Nonclassical Co–H2 Catalyst: A H2 Spin on Isomerization and E-Selectivity. J. Am. Chem. Soc. 2016, 138, 13700.10.1021/jacs.6b08128. - DOI - PubMed
    4. Semba K.; Kameyama R.; Nakao Y. Copper-Catalyzed Semihydrogenation of Alkynes to Z-Alkenes. Synlett 2015, 26, 318.10.1055/s-0034-1379896. - DOI
    1. Wang D.; Astruc D. The Golden Age of Transfer Hydrogenation. Chem. Rev. 2015, 115, 6621.10.1021/acs.chemrev.5b00203. - DOI - PubMed
    1. Fu S.; Chen N.-Y.; Liu X.; Shao Z.; Luo S.-P.; Liu Q. Ligand-Controlled Cobalt-Catalyzed Transfer Hydrogenation of Alkynes: Stereodivergent Synthesis of Z- and E-Alkenes. J. Am. Chem. Soc. 2016, 138, 8588.10.1021/jacs.6b04271. - DOI - PubMed
    2. Korytiaková E.; Thiel N. O.; Pape F.; Teichert J. F. Copper(I)-catalysed Transfer Hydrogenations with Ammonia Borane. Chem. Commun. 2017, 53, 732.10.1039/C6CC09067B. - DOI - PubMed