Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun;53(6):840-860.
doi: 10.1038/s41588-021-00852-9. Epub 2021 May 31.

The trans-ancestral genomic architecture of glycemic traits

Ji Chen #  1   2 Cassandra N Spracklen #  3   4 Gaëlle Marenne #  2   5 Arushi Varshney #  6 Laura J Corbin #  7   8 Jian'an Luan  9 Sara M Willems  9 Ying Wu  3 Xiaoshuai Zhang  9   10 Momoko Horikoshi  11   12   13 Thibaud S Boutin  14 Reedik Mägi  15 Johannes Waage  16 Ruifang Li-Gao  17 Kei Hang Katie Chan  18   19   20 Jie Yao  21 Mila D Anasanti  22 Audrey Y Chu  23 Annique Claringbould  24 Jani Heikkinen  22 Jaeyoung Hong  25 Jouke-Jan Hottenga  26   27 Shaofeng Huo  28 Marika A Kaakinen  22   29 Tin Louie  30 Winfried März  31   32   33 Hortensia Moreno-Macias  34 Anne Ndungu  12 Sarah C Nelson  30 Ilja M Nolte  35 Kari E North  36 Chelsea K Raulerson  3 Debashree Ray  37 Rebecca Rohde  36 Denis Rybin  25 Claudia Schurmann  38   39 Xueling Sim  40   41   42 Lorraine Southam  2   43 Isobel D Stewart  9 Carol A Wang  44 Yujie Wang  36 Peitao Wu  25 Weihua Zhang  45   46 Tarunveer S Ahluwalia  16   47   48 Emil V R Appel  49 Lawrence F Bielak  50 Jennifer A Brody  51 Noël P Burtt  52 Claudia P Cabrera  53   54 Brian E Cade  55   56 Jin Fang Chai  40 Xiaoran Chai  57   58 Li-Ching Chang  59 Chien-Hsiun Chen  59 Brian H Chen  60 Kumaraswamy Naidu Chitrala  61 Yen-Feng Chiu  62 Hugoline G de Haan  17 Graciela E Delgado  33 Ayse Demirkan  29   63 Qing Duan  3   64 Jorgen Engmann  65 Segun A Fatumo  66   67   68 Javier Gayán  69 Franco Giulianini  23 Jung Ho Gong  18 Stefan Gustafsson  70 Yang Hai  71 Fernando P Hartwig  7   72 Jing He  73 Yoriko Heianza  74 Tao Huang  75 Alicia Huerta-Chagoya  76   77 Mi Yeong Hwang  78 Richard A Jensen  51 Takahisa Kawaguchi  79 Katherine A Kentistou  80   81 Young Jin Kim  78 Marcus E Kleber  33 Ishminder K Kooner  46 Shuiqing Lai  18 Leslie A Lange  82 Carl D Langefeld  83 Marie Lauzon  21 Man Li  84 Symen Ligthart  63 Jun Liu  63   85 Marie Loh  45   86 Jirong Long  87 Valeriya Lyssenko  88   89 Massimo Mangino  90   91 Carola Marzi  92   93 May E Montasser  94 Abhishek Nag  12 Masahiro Nakatochi  95 Damia Noce  96 Raymond Noordam  97 Giorgio Pistis  98 Michael Preuss  38   99 Laura Raffield  3 Laura J Rasmussen-Torvik  100 Stephen S Rich  101   102 Neil R Robertson  11   12 Rico Rueedi  103   104 Kathleen Ryan  94 Serena Sanna  24   98 Richa Saxena  105   106   107 Katharina E Schraut  80   81 Bengt Sennblad  108 Kazuya Setoh  79 Albert V Smith  109   110 Thomas Sparsø  49 Rona J Strawbridge  111   112 Fumihiko Takeuchi  113 Jingyi Tan  21 Stella Trompet  97   114 Erik van den Akker  115   116   117 Peter J van der Most  35 Niek Verweij  118   119 Mandy Vogel  120 Heming Wang  55   56 Chaolong Wang  121   122 Nan Wang  123   124 Helen R Warren  53   54 Wanqing Wen  87 Tom Wilsgaard  125 Andrew Wong  126 Andrew R Wood  1 Tian Xie  35 Mohammad Hadi Zafarmand  127   128 Jing-Hua Zhao  129 Wei Zhao  50 Najaf Amin  63   85 Zorayr Arzumanyan  21 Arne Astrup  130 Stephan J L Bakker  131 Damiano Baldassarre  132   133 Marian Beekman  115 Richard N Bergman  134 Alain Bertoni  135 Matthias Blüher  136 Lori L Bonnycastle  137 Stefan R Bornstein  138 Donald W Bowden  139 Qiuyin Cai  73 Archie Campbell  140   141 Harry Campbell  80 Yi Cheng Chang  59   142   143 Eco J C de Geus  26   27 Abbas Dehghan  63 Shufa Du  144 Gudny Eiriksdottir  110 Aliki Eleni Farmaki  145   146 Mattias Frånberg  112 Christian Fuchsberger  96 Yutang Gao  147 Anette P Gjesing  49 Anuj Goel  12   148 Sohee Han  78 Catharina A Hartman  149 Christian Herder  150   151   152 Andrew A Hicks  96 Chang-Hsun Hsieh  153   154 Willa A Hsueh  155 Sahoko Ichihara  156 Michiya Igase  157 M Arfan Ikram  63 W Craig Johnson  30 Marit E Jørgensen  47   158 Peter K Joshi  80 Rita R Kalyani  159 Fouad R Kandeel  160 Tomohiro Katsuya  161   162 Chiea Chuen Khor  122 Wieland Kiess  120 Ivana Kolcic  163 Teemu Kuulasmaa  164 Johanna Kuusisto  165 Kristi Läll  15 Kelvin Lam  21 Deborah A Lawlor  7   8 Nanette R Lee  166   167 Rozenn N Lemaitre  51 Honglan Li  168 Lifelines Cohort StudyShih-Yi Lin  169   170 Jaana Lindström  171 Allan Linneberg  172   173 Jianjun Liu  122   174 Carlos Lorenzo  175 Tatsuaki Matsubara  176 Fumihiko Matsuda  79 Geltrude Mingrone  177 Simon Mooijaart  97 Sanghoon Moon  78 Toru Nabika  178 Girish N Nadkarni  38 Jerry L Nadler  179 Mari Nelis  15 Matt J Neville  11   180 Jill M Norris  181 Yasumasa Ohyagi  182 Annette Peters  93   183   184 Patricia A Peyser  50 Ozren Polasek  163   185 Qibin Qi  186 Dennis Raven  149 Dermot F Reilly  187 Alex Reiner  188 Fernando Rivideneira  189 Kathryn Roll  21 Igor Rudan  190 Charumathi Sabanayagam  57   191 Kevin Sandow  21 Naveed Sattar  192 Annette Schürmann  93   193 Jinxiu Shi  194 Heather M Stringham  41   42 Kent D Taylor  21 Tanya M Teslovich  195 Betina Thuesen  172 Paul R H J Timmers  80   196 Elena Tremoli  133 Michael Y Tsai  197 Andre Uitterlinden  189 Rob M van Dam  40   174   198 Diana van Heemst  97 Astrid van Hylckama Vlieg  17 Jana V van Vliet-Ostaptchouk  35 Jagadish Vangipurapu  199 Henrik Vestergaard  49   200 Tao Wang  186 Ko Willems van Dijk  201   202   203 Tatijana Zemunik  204 Gonçalo R Abecasis  42 Linda S Adair  144   205 Carlos Alberto Aguilar-Salinas  206   207   208 Marta E Alarcón-Riquelme  209   210 Ping An  211 Larissa Aviles-Santa  212 Diane M Becker  213 Lawrence J Beilin  214 Sven Bergmann  103   104   215 Hans Bisgaard  16 Corri Black  216 Michael Boehnke  41   42 Eric Boerwinkle  217   218 Bernhard O Böhm  219   220 Klaus Bønnelykke  16 D I Boomsma  26   27 Erwin P Bottinger  38   221   222 Thomas A Buchanan  124   223   224 Mickaël Canouil  225   226 Mark J Caulfield  53   54 John C Chambers  45   46   86   227   228 Daniel I Chasman  23   229 Yii-Der Ida Chen  21 Ching-Yu Cheng  57   191 Francis S Collins  137 Adolfo Correa  230 Francesco Cucca  98 H Janaka de Silva  231 George Dedoussis  232 Sölve Elmståhl  233 Michele K Evans  234 Ele Ferrannini  235 Luigi Ferrucci  236 Jose C Florez  107   237   238 Paul W Franks  89   239 Timothy M Frayling  1 Philippe Froguel  225   226   240 Bruna Gigante  241 Mark O Goodarzi  242 Penny Gordon-Larsen  144   205 Harald Grallert  92   93 Niels Grarup  49 Sameline Grimsgaard  125 Leif Groop  243   244 Vilmundur Gudnason  110   245 Xiuqing Guo  21 Anders Hamsten  112 Torben Hansen  49 Caroline Hayward  196 Susan R Heckbert  246 Bernardo L Horta  72 Wei Huang  194 Erik Ingelsson  247 Pankow S James  248 Marjo-Ritta Jarvelin  249   250   251   252 Jost B Jonas  253   254   255 J Wouter Jukema  114   256 Pontiano Kaleebu  257 Robert Kaplan  186   188 Sharon L R Kardia  50 Norihiro Kato  113 Sirkka M Keinanen-Kiukaanniemi  258   259 Bong-Jo Kim  78 Mika Kivimaki  260 Heikki A Koistinen  261   262   263 Jaspal S Kooner  46   227   228   264 Antje Körner  120 Peter Kovacs  136   265 Diana Kuh  126 Meena Kumari  266 Zoltan Kutalik  104   267 Markku Laakso  165 Timo A Lakka  268   269   270 Lenore J Launer  61 Karin Leander  271 Huaixing Li  28 Xu Lin  28 Lars Lind  272 Cecilia Lindgren  12   273   274 Simin Liu  18 Ruth J F Loos  38   99 Patrik K E Magnusson  275 Anubha Mahajan  12   276 Andres Metspalu  15 Dennis O Mook-Kanamori  17   277 Trevor A Mori  214 Patricia B Munroe  53   54 Inger Njølstad  125 Jeffrey R O'Connell  94 Albertine J Oldehinkel  149 Ken K Ong  9 Sandosh Padmanabhan  278 Colin N A Palmer  279 Nicholette D Palmer  139 Oluf Pedersen  49 Craig E Pennell  44 David J Porteous  140   280 Peter P Pramstaller  96 Michael A Province  211 Bruce M Psaty  51   246   281 Lu Qi  282 Leslie J Raffel  283 Rainer Rauramaa  270 Susan Redline  55   56 Paul M Ridker  23   284 Frits R Rosendaal  17 Timo E Saaristo  285   286 Manjinder Sandhu  287 Jouko Saramies  288 Neil Schneiderman  289 Peter Schwarz  93   138   290 Laura J Scott  41   42 Elizabeth Selvin  37 Peter Sever  264 Xiao-Ou Shu  87 P Eline Slagboom  115 Kerrin S Small  90 Blair H Smith  291 Harold Snieder  35 Tamar Sofer  238   292 Thorkild I A Sørensen  7   8   49   293 Tim D Spector  90 Alice Stanton  294 Claire J Steves  90   295 Michael Stumvoll  136 Liang Sun  28 Yasuharu Tabara  79 E Shyong Tai  40   174   296 Nicholas J Timpson  7   8 Anke Tönjes  136 Jaakko Tuomilehto  297   298   299 Teresa Tusie  77   300 Matti Uusitupa  301 Pim van der Harst  24   118 Cornelia van Duijn  63   85 Veronique Vitart  196 Peter Vollenweider  302 Tanja G M Vrijkotte  127 Lynne E Wagenknecht  303 Mark Walker  304 Ya X Wang  254 Nick J Wareham  9 Richard M Watanabe  123   124   224 Hugh Watkins  12   148 Wen B Wei  305 Ananda R Wickremasinghe  306 Gonneke Willemsen  26   27 James F Wilson  80   196 Tien-Yin Wong  57   191 Jer-Yuarn Wu  59 Anny H Xiang  307 Lisa R Yanek  213 Loïc Yengo  308 Mitsuhiro Yokota  309 Eleftheria Zeggini  2   43   310 Wei Zheng  87 Alan B Zonderman  61 Jerome I Rotter  21 Anna L Gloyn  11   12   180   311 Mark I McCarthy  11   12   180   312   276 Josée Dupuis  25 James B Meigs  107   238   313 Robert A Scott  9 Inga Prokopenko  22   29 Aaron Leong  229   314   315 Ching-Ti Liu  25 Stephen C J Parker  6   316 Karen L Mohlke  3 Claudia Langenberg  9 Eleanor Wheeler  2   9 Andrew P Morris  12   317   318   319 Inês Barroso  320   321   322 Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC)
Collaborators, Affiliations

The trans-ancestral genomic architecture of glycemic traits

Ji Chen et al. Nat Genet. 2021 Jun.

Abstract

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.

PubMed Disclaimer

Conflict of interest statement

Competing interests statement

A. Astrup is the recipient of honoraria as speaker for a wide range of Danish and international concerns and receives royalties from textbooks, and from popular diet and cookery books. A. Astrup is also co-inventor of a number of patents, including Methods of inducing weight loss, treating obesity and preventing weight gain (licensee Gelesis, USA) and Biomarkers for predicting degree of weight loss (licensee Nestec SA, CH), owned by the University of Copenhagen, in accordance with Danish law. I. Barroso and spouse own stock in GlaxoSmithKline and Incyte Corporation. B.H. Chen is now an employee of Life Epigenetics, Inc.; all work was completed prior to employment at Life Epigenetics. A.Y. Chu is now an employee of Merck & Co.; all work was completed prior to employment by Merck & Co. J.C. Florez has received consulting honoraria from Janssen. J. Gayan is now an employee of F. Hoffmann-La Roche Ltd, and owns stock of Roche and GlaxoSmithKline. A.L. Gloyn has received honoraria from Merck and Novo Nordisk. As of June 2019, ALG discloses that her spouse is an employee of Genentech and hold stock options in Roche. E. Ingelsson is now an employee of GSK; all work was completed prior to his employment by GSK. W. März has received grants and/or personal fees from the following companies/corporations: Siemens Healthineers, Aegerion Pharmaceuticals, AMGEN, Astrazeneca, Sanofi, Alexion Pharmaceuticals, BASF, Abbott Diagnostics Numares AG, Berlin-Chemie, Akzea Therapeutics, Bayer Vital GmbH, bestbion dx GmbH, Boehringer Ingelheim Pharma GmbH Co KG, Immundiagnostik GmbH, Merck Chemicals GmbH, MSD Sharp and Dohme GmbH, Novartis Pharma GmbH, Olink Proteomics, and Synlab Holding Deutschland GmbH. M.I. McCarthy has served on advisory panels for Pfizer, NovoNordisk, Zoe Global and received honoraria from Merck, Pfizer, NovoNordisk and Eli Lilly. He holds stock options in Zoe Global and has received research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, Takeda. He is now an employee of Genentech and a holder of Roche stock. J.B. Meigs has consulted for Quest Diagnostics, Inc., who manufacturers of an HbA1c assay. M.E. Montasser has received grant funding from Regeneron Pharmaceutials. M.E. Montasser is also an inventor on a patent that was published by the United States Patent and Trademark Office on December 6, 2018 under Publication Number US 2018-0346888, and international patent application that was published on December 13, 2018 under Publication Number WO-2018/226560; all work was completed before these COI arose, and are unrelated to this work. D. Mook-Kanamori is a part-time clinical research consultant for Metabolon. J.L. Nadler is a member of the Scientific Advisory Board for Veralox Therapeutics Inc. C.N.A. Palmer has received research support from GlaxoSmithKline and AstraZeneca unrelated to this project. B.M. Psaty serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. N. Sattar has consulted for Astrazeneca, Boehringer Ingelheim, Eli Lilly, Novo Nordisk, Napp and Sanofi and received grant support from Boehringer Ingelheim. R.A. Scott is an employee and shareholder of GlaxoSmithKline. T. Spector is the founder of Zoe Global Ltd. J. Tuomilehto receives research support from Bayer, is a consultant for Eli Lily, and holds stock in Orion Pharma and Aktivolabs Ltd.

Figures

Extended Data Fig. 1
Extended Data Fig. 1. Flow diagram of this study
The figure shows the data, key methods and main analyses included in this effort.
Extended Data Fig. 2
Extended Data Fig. 2. Locus diagram
Trans-ancestry locus A contains a trans-ancestry lead variant for one glycemic trait represented by the blue diamond, and another single-ancestry index variant for another glycemic trait represented by the orange triangle. Single-ancestry locus B contains a single-ancestry lead variant represented by the purple square. The orange, blue and purple bars represent a +/- 500Kb window around the orange, blue, and purple variants, respectively. The black bars indicate the full locus window where trans-ancestry locus A contains trans-ancestry lead and single-ancestry index variants for two traits and single-ancestry locus B has a single-ancestry lead variant for a single trait.
Extended Data Fig. 3
Extended Data Fig. 3. Venn diagram
Overlap of TA loci between traits.
Extended Data Fig. 4
Extended Data Fig. 4. Allele frequency versus effect size
Allele frequency versus effect size for all signals detected through the trans-ancestry meta-analyses, for each of the four traits. Frequency and effect size are from the European meta-analyses. The power curves were computed based on the European sample size for each trait, and the mean (m) and standard deviation (sd) computed on the FENLAND study: FG, m=4.83 mmol/l, sd=0.68; FI, m=3.69 mmol/l, sd=0.60; 2hGlu, m=5.30 mmol/l, sd=1.74; HbA1c, m=5.55%, sd=0.48.
Extended Data Fig. 5
Extended Data Fig. 5. EAF correlation and heterogeneity test
Pearson correlation of EAF on the lower tri-angle and p-value of one-side heterogeneity test without multiple testing corrections on the upper tri-angle of the trans-ancestry lead variants associated with each trait between ancestries. Correlations > 0.7 are in bold.
Extended Data Fig. 6
Extended Data Fig. 6. Forest plot of T2D GRS from HbA1c variants
The p-value on the right side is from the two-side test without multiple testing corrections. Vertical points of each diamond represent the point estimate of the odds ratio. The horizontal points of each diamond represent the 95% confidence interval of the odds ratio. Figure shows the association results between HbA1c-associated variants built into a GRS for T2D by taking each HbA1c-associated variant and using a weight that corresponds to its T2D effect size (logOR) based on analysis by the DIAGRAM consortium. The overall GRS is subsequently partitioned according to the HbA1c signal classification. The overall and partitioned GRS were tested for association with T2D based on data from UK biobank.
Extended Data Fig. 7
Extended Data Fig. 7. Enrichment of glycemic trait associated GWAS variants to overlap genomic annotations using GREGOR
Figure shows enrichment for 59 total static and stretch enhancer annotations considered. One-side test significance (red) is determined after Bonferroni correction to account for 59 total annotations tested for each trait; nominal significance (P<0.05) is indicated in yellow.
Extended Data Fig. 8
Extended Data Fig. 8. Enrichment of glycemic trait associated GWAS variants to overlap genomic annotations using fGWAS
Figure shows log2(Fold Enrichment) of GWAS variants to overlap 59 static and stretch enhancer annotations calculated. Significant enrichment (red) is considered if the 95% confidence intervals (shown by the error bars) do not overlap 0.
Extended Data Fig. 9
Extended Data Fig. 9. Enrichment of glycemic trait associated GWAS variants to overlap genomic annotations using GARFIELD
Figure shows the beta or effect size (log odds ratio) for GWAS variants to overlap 59 static and stretch enhancer annotations. GWAS variants were included at two significance thresholds, 1e-05 (A) and 1e-08 (B). One-side test significance (red) is determined after Bonferroni correction to account for effective annotations tested for each trait reported by GARFIELD (see supplementary note); nominal significance (P<0.05) is indicated in yellow. The 95% confidence intervals are shown by the error bars.
Figure 1
Figure 1. Summary of all 242 loci identified in this study.
235 trans-ancestry loci are shown in orange (novel) or black (established) along with seven single-ancestry loci (blue) represented by nearest gene. Each locus is mapped to corresponding chromosome (outer segment). Each set of rows shows the results from the trans-ancestry analysis (orange) and each of the ancestries: European (purple), African American (tan), East Asian (grey), South Asian (green), Hispanic (yellow), sub-Saharan African (Ugandan-pink). Loci with a corresponding type 2 diabetes signal are represented by red circles in the middle of the plot.
Figure 2
Figure 2. Trait variance explained by associated loci.
The boxplots show the maximum, first quartile, median, third quartile and minimum of trait variance explained when using a genetic score with single-ancestry lead and index variants (EUR, AA, EAS, HISP and SAS) or a combination of individual trait trans-ancestry lead variants and single-ancestry lead and index variants (TA+EUR, TA+AA, TA+EAS, TA+HISP and TA+SAS). Variance explained for each trait (FG, FI and HbA1c) in each ancestry is shown on different panels and in different colors. Data points represent the variance explained in individual cohorts used in this analysis. R2 was estimated in 1 to 11 cohorts with sample sizes ranging from 489 to 9,758 (Supplementary Tables 8-11).
Figure 3
Figure 3. Transferability of PGS across ancestries.
For each trait, the barplots represent trait variance explained when using a European ancestry-derived PGS in European, East Asian and African American test datasets. Variance explained (the height of each bar) for each trait (FG, FI and HbA1c) in each ancestry is shown on different panels and in different colors.
Figure 4
Figure 4. Trans-ancestry fine-mapping.
A) Number of plausible causal variants at each locus-trait association derived from FINEMAP. B) Number of variants within each 99% credible set. Twenty-one locus-trait associations at 19 loci were mapped to a single variant in the 99% credible set. C) Fine-mapping resolution. For each of the 98 locus-trait associations with a predicted single causal variant in both trans-ancestry and single-ancestry analyses, the number of variants included in the 99% credible set in the single-ancestry fine-mapping (x axis; logarithmic scale) is plotted against those in the trans-ancestry fine-mapping (y axis; logarithmic scale). Trans-ancestry and single-ancestry fine-mapping were based on the same set of variants. After removing eight locus-trait associations with one variant in the 99% credible sets in both trans-ancestry and single-ancestry analyses, there were 18 locus-trait associations (in grey) where trans-ancestry fine-mapping did not improve the resolution of fine-mapping results (i.e. number of variants in the 99% credible set did not decrease). Of the 72 locus-trait associations with improved trans-ancestry fine-mapping resolution (blue and red) further analyses in European fine-mapping emulating the total sample size in trans-ancestry fine-mapping demonstrated that 34 locus-trait associations (in red) were improved because of both total sample size and differences across ancestries, while 38 locus-trait associations (in blue) were only improved due to increased sample size in the original trans-ancestry fine-mapping analysis.
Figure 5
Figure 5. Epigenomic landscape of trait-associated variants.
A: Enrichment of GWAS variants to overlap genomic regions including ‘Static Annotations’ which are common or ‘static’ across cell types and ‘Stretch Enhancers’ which are identified in each tissue/cell type. The numbers of signals for each trait are indicated in parentheses. Enrichment was calculated using GREGOR . One-sided test for significance (red) is determined after Bonferroni correction to account for 59 total annotations tested for each trait; nominal significance (P<0.05) is indicated in yellow. B: Enrichment for HbA1c GWAS signals partitioned into “hard” Glycemic and Red Blood Cell cluster (signals from “hard” mature Red Blood Cell and reticulocyte clusters together) to overlap annotations including StrEs in Islets and the blood-derived leukemia cell line K562, respectively (additional partitioned results in Supplementary Table 17). C: Individual FI GWAS signals that drive enrichment in Adipose and Skeletal Muscle StrEs. D, E: Genome browser shots of FI GWAS signals – intronic region of the COL4A2 gene (D) and an inter-genic region ~25kb from LINC01214 gene (E) showing GWAS SNPs (lead and LD r2>0.8 proxies), ATAC-seq signal tracks and chromatin state annotations in different tissues/cell types.
Figure 6
Figure 6. Tissues and cell types significantly enriched for genes within glycemic-associated loci.
Top panel FG-associated loci, middle panel FI-associated loci, bottom panel Hba1c-associated loci. FDR thresholds are shown in red (q<0.05), orange (q<0.2), black (q≥0.2).
Figure 7
Figure 7. Gene-set enrichment analyses.
Results from affinity-propagation clustering of significantly enriched gene-sets (FDR<0.05) identified by DEPICT for A) FG, B) FI, and C) HbA1c. Each node is a meta gene-set which is represented by an exemplar gene-set within the meta gene-set. For example, in B. “chronic myeloid leukemia “ is an exemplar gene-set representing a much broader meta gene-set relating to cancer and represented in the zoomed in section on the right. Similarities between the meta gene-sets are represented by Pearson correlation coefficients (r>0.3). The nodes are colored according to the minimum gene-set enrichment p-value for gene-sets in that meta gene-set.. PPI=protein-protein interaction network.

References

    1. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation. World Health Organization; 2011. Copyright © World Health Organization 2011. - PubMed
    1. Goodarzi MO, et al. Fasting insulin reflects heterogeneous physiological processes: role of insulin clearance. American journal of physiology Endocrinology and metabolism. 2011;301:E402–408. doi: 10.1152/ajpendo.00013.2011. - DOI - PMC - PubMed
    1. Dimas AS, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63:2158–2171. doi: 10.2337/db13-0949. - DOI - PMC - PubMed
    1. Udler MS, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS medicine. 2018;15:e1002654. doi: 10.1371/journal.pmed.1002654. - DOI - PMC - PubMed
    1. Udler MS, McCarthy MI, Florez JC, Mahajan A. Genetic Risk Scores for Diabetes Diagnosis and Precision Medicine. Endocrine reviews. 2019;40:1500–1520. doi: 10.1210/er.2019-00088. - DOI - PMC - PubMed

Publication types

Grants and funding