SARS-CoV-2 RNA Quantification Using Droplet Digital RT-PCR
- PMID: 34062285
- PMCID: PMC8164350
- DOI: 10.1016/j.jmoldx.2021.04.014
SARS-CoV-2 RNA Quantification Using Droplet Digital RT-PCR
Abstract
Quantitative viral load assays have transformed our understanding of viral diseases. They hold similar potential to advance COVID-19 control and prevention, but SARS-CoV-2 viral load tests are not yet widely available. SARS-CoV-2 molecular diagnostic tests, which typically employ real-time RT-PCR, yield semiquantitative results only. Droplet digital RT-PCR (RT-ddPCR) offers an attractive platform for SARS-CoV-2 RNA quantification. Eight primer/probe sets originally developed for real-time RT-PCR-based SARS-CoV-2 diagnostic tests were evaluated for use in RT-ddPCR; three were identified as the most efficient, precise, and sensitive for RT-ddPCR-based SARS-CoV-2 RNA quantification. For example, the analytical efficiency for the E-Sarbeco primer/probe set was approximately 83%, whereas assay precision, measured as the coefficient of variation, was approximately 2% at 1000 input copies/reaction. Lower limits of quantification and detection for this primer/probe set were 18.6 and 4.4 input SARS-CoV-2 RNA copies/reaction, respectively. SARS-CoV-2 RNA viral loads in a convenience panel of 48 COVID-19-positive diagnostic specimens spanned a 6.2log10 range, confirming substantial viral load variation in vivo. RT-ddPCR-derived SARS-CoV-2 E gene copy numbers were further calibrated against cycle threshold values from a commercial real-time RT-PCR diagnostic platform. This log-linear relationship can be used to mathematically derive SARS-CoV-2 RNA copy numbers from cycle threshold values, allowing the wealth of available diagnostic test data to be harnessed to address foundational questions in SARS-CoV-2 biology.
Copyright © 2021 Association for Molecular Pathology and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Figures











Similar articles
-
Analytical and Clinical Performance of Droplet Digital PCR in the Detection and Quantification of SARS-CoV-2.Mol Diagn Ther. 2021 Sep;25(5):617-628. doi: 10.1007/s40291-021-00547-1. Epub 2021 Jul 28. Mol Diagn Ther. 2021. PMID: 34319580 Free PMC article.
-
Sensitive detection and quantification of SARS-CoV-2 by multiplex droplet digital RT-PCR.Eur J Clin Microbiol Infect Dis. 2021 Apr;40(4):807-813. doi: 10.1007/s10096-020-04076-3. Epub 2020 Oct 26. Eur J Clin Microbiol Infect Dis. 2021. PMID: 33104899 Free PMC article.
-
Clinical evaluation of a multiplex real-time RT-PCR assay for detection of SARS-CoV-2 in individual and pooled upper respiratory tract samples.Arch Virol. 2021 Sep;166(9):2551-2561. doi: 10.1007/s00705-021-05148-1. Epub 2021 Jul 14. Arch Virol. 2021. PMID: 34259914 Free PMC article.
-
Diagnostic Accuracy of Conjunctival Rt-Pcr in Sars-Cov-2: A Systematic Review and Diagnostic Accuracy Meta-Analysis.Ocul Immunol Inflamm. 2024 Oct;32(8):1621-1632. doi: 10.1080/09273948.2023.2272200. Epub 2024 Apr 30. Ocul Immunol Inflamm. 2024. PMID: 38687292
-
Progress of the Detection Methods for SARS-CoV-2.Clin Lab. 2024 Aug 1;70(8). doi: 10.7754/Clin.Lab.2024.231148. Clin Lab. 2024. PMID: 39193975 Review.
Cited by
-
A multiplexed, paired-pooled droplet digital PCR assay for detection of SARS-CoV-2 in saliva.Sci Rep. 2023 Feb 22;13(1):3075. doi: 10.1038/s41598-023-29858-5. Sci Rep. 2023. PMID: 36813822 Free PMC article.
-
Modelling RT-qPCR cycle-threshold using digital PCR data for implementing SARS-CoV-2 viral load studies.PLoS One. 2021 Dec 20;16(12):e0260884. doi: 10.1371/journal.pone.0260884. eCollection 2021. PLoS One. 2021. PMID: 34928966 Free PMC article.
-
Evolution and Impact of Nucleic Acid Amplification Test (NAAT) for Diagnosis of Coronavirus Disease.Anal Chem. 2024 May 21;96(20):8124-8146. doi: 10.1021/acs.analchem.3c05225. Epub 2024 Apr 30. Anal Chem. 2024. PMID: 38687959 Free PMC article. Review. No abstract available.
-
Droplet Digital PCR Enhances Sensitivity of Canine Distemper Virus Detection.Viruses. 2024 Oct 31;16(11):1720. doi: 10.3390/v16111720. Viruses. 2024. PMID: 39599835 Free PMC article.
-
Viral load quantitation at the point-of-care with shaken digital droplet RT-LAMP.Lab Chip. 2023 Jul 25;23(15):3479-3486. doi: 10.1039/d3lc00096f. Lab Chip. 2023. PMID: 37431299 Free PMC article.
References
-
- Mellors J.W., Rinaldo C.R., Jr., Gupta P., White R.M., Todd J.A., Kingsley L.A. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996;272:1167–1170. - PubMed
-
- Mellors J.W. Viral-load tests provide valuable answers. Sci Am. 1998;279:90–93. - PubMed
-
- Riddler S.A., Mellors J.W. HIV-1 viral dynamics and viral load measurement: implications for therapy. AIDS Clin Rev. 1997:47–65. - PubMed
-
- Mellors J.W., Muñoz A., Giorgi J.V., Margolick J.B., Tassoni C.J., Gupta P., Kingsley L.A., Todd J.A., Saah A.J., Detels R., Phair J.P., Rinaldo C.R., Jr. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med. 1997;126:946–954. - PubMed
-
- Durante-Mangoni E., Zampino R., Portella G., Adinolfi L.E., Utili R., Ruggiero G. Correlates and prognostic value of the first-phase hepatitis C virus RNA kinetics during treatment. Clin Infect Dis. 2009;49:498–506. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous