Nipagin-Functionalized Porphyrazine and Phthalocyanine-Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium Dioxide Nanoparticles P25
- PMID: 34062815
- PMCID: PMC8124671
- DOI: 10.3390/molecules26092657
Nipagin-Functionalized Porphyrazine and Phthalocyanine-Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium Dioxide Nanoparticles P25
Abstract
Aza-porphyrinoids exhibit distinct spectral properties in UV-Vis, and they are studied in applications such as photosensitizers in medicine and catalysts in technology. The use of appropriate peripheral substituents allows the modulation of their physicochemical properties. Phthalocyanine and sulfanyl porphyrazine octa-substituted with 4-(butoxycarbonyl)phenyloxy moieties were synthesized and characterized using UV-Vis and NMR spectroscopy, as well as mass spectrometry. A comparison of porphyrazine with phthalocyanine aza-porphyrinoids revealed that phthalocyanine macrocycle exhibits higher singlet oxygen generation quantum yields, reaching the value of 0.29 in DMF. After both macrocycles had been deposited on titanium dioxide nanoparticles P25, the cytotoxicities and photocytotoxicities of the prepared materials were studied using a Microtox® acute toxicity test. The highest cytotoxicity occurred after irradiation with a red light for the material composed of phthalocyanine deposited on titania nanoparticles.
Keywords: Linstead macrocyclization; Microtox; phthalocyanine; porphyrazine; singlet oxygen; titanium dioxide.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures








Similar articles
-
Sulfanyl Porphyrazines with Morpholinylethyl Periphery-Synthesis, Electrochemistry, and Photocatalytic Studies after Deposition on Titanium(IV) Oxide P25 Nanoparticles.Molecules. 2021 Apr 15;26(8):2280. doi: 10.3390/molecules26082280. Molecules. 2021. PMID: 33920778 Free PMC article.
-
Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity.J Inorg Biochem. 2013 Oct;127:62-72. doi: 10.1016/j.jinorgbio.2013.06.012. Epub 2013 Jun 28. J Inorg Biochem. 2013. PMID: 23872453
-
In vitro photodynamic activity of lipid vesicles with zinc phthalocyanine derivative against Enterococcus faecalis.J Photochem Photobiol B. 2018 Jun;183:111-118. doi: 10.1016/j.jphotobiol.2018.04.025. Epub 2018 Apr 17. J Photochem Photobiol B. 2018. PMID: 29702340
-
Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy.Curr Drug Metab. 2012 Oct;13(8):1119-22. doi: 10.2174/138920012802850074. Curr Drug Metab. 2012. PMID: 22380016 Review.
-
A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer.Nanoscale. 2024 Feb 15;16(7):3243-3268. doi: 10.1039/d3nr05801h. Nanoscale. 2024. PMID: 38265094 Review.
Cited by
-
Improved Electrochemical Hydrogen Peroxide Detection Using a Nickel(II) Phthalimide-Substituted Porphyrazine Combined with Various Carbon Nanomaterials.Nanomaterials (Basel). 2023 Feb 25;13(5):862. doi: 10.3390/nano13050862. Nanomaterials (Basel). 2023. PMID: 36903741 Free PMC article.
-
Zinc(II), Palladium(II), and Metal-Free Phthalocyanines Bearing Nipagin-Functionalized Substituents against Candida auris and Selected Multidrug-Resistant Microbes.Pharmaceutics. 2022 Aug 12;14(8):1686. doi: 10.3390/pharmaceutics14081686. Pharmaceutics. 2022. PMID: 36015312 Free PMC article.
-
Synthesis, Electrochemical and Photochemical Properties of Sulfanyl Porphyrazine with Ferrocenyl Substituents.Molecules. 2023 Jul 5;28(13):5215. doi: 10.3390/molecules28135215. Molecules. 2023. PMID: 37446877 Free PMC article.
References
-
- Rodríguez-Morgade M.S., Stuzhin P.A. The chemistry of porphyrazines: An overview. J. Porphyrins Phthalocyanines. 2004;8:1129–1165. doi: 10.1142/S1088424604000490. - DOI
-
- Falkowski M., Rebis T., Piskorz J., Popenda L., Jurga S., Mielcarek J., Milczarek G., Goslinski T. Multiwalled carbon nanotube/sulfanyl porphyrazine hybrids deposited on glassy carbon electrode—Effect of nitro peripheral groups on electrochemical properties. J. Porphyrins Phthalocyanines. 2017;21:295–301. doi: 10.1142/S1088424617500134. - DOI
-
- Olgaç R., Baygu Y., Yıldız B., Gök Y., Köksoy B., Durmuş M. Synthesis, characterization and photochemical properties of metallo porphyrazines substituted with alkyl linked carbazole, benzoazepine and phenothiazine moieties. J. Porphyrins Phthalocyanines. 2017;21:599–610. doi: 10.1142/S1088424617500596. - DOI
-
- Chełminiak-Dudkiewicz D., Ziegler-Borowska M., Stolarska M., Sobotta L., Falkowski M., Mielcarek J., Goslinski T., Kowalonek J., Węgrzynowska-Drzymalska K., Kaczmarek H. The chitosan—Porphyrazine hybrid materials and their photochemical properties. J. Photochemistry Photobiol. B Biol. 2018;181:1–13. doi: 10.1016/j.jphotobiol.2018.02.021. - DOI - PubMed
-
- Yang C., Gao L., Zhang B., Zhang Z., Deng K. Uniform Zinc Thioporphyrazine nanosphere by self-assembly and the photocatalytic performance. J. Porphyrins Phthalocyanines. 2018;22:868–876. doi: 10.1142/S1088424618500487. - DOI
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources