Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife
- PMID: 34063152
- PMCID: PMC8148099
- DOI: 10.3390/microorganisms9050999
Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife
Abstract
Commensal bacteria act as important reservoirs of virulence and resistance genes. However, existing data are generally only focused on the analysis of human or human-related bacterial populations. There is a lack of genomic studies regarding commensal bacteria from hosts less exposed to antibiotics and other selective forces due to human activities, such as wildlife. In the present study, the genomes of thirty-eight E. coli strains from the gut of various wild animals were sequenced. The analysis of their accessory genome yielded a better understanding of the role of the mobilome on inter-bacterial dissemination of mosaic virulence and resistance plasmids. The study of the presence and composition of the CRISPR/Cas systems in E. coli from wild animals showed some viral and plasmid sequences among the spacers, as well as the relationship between CRISPR/Cas and E. coli phylogeny. Further, we constructed a single nucleotide polymorphisms-based core tree with E. coli strains from different sources (humans, livestock, food and extraintestinal environments). Bacteria from humans or highly human-influenced settings exhibit similar genetic patterns in CRISPR-Cas systems, plasmids or virulence/resistance genes-carrying modules. These observations, together with the absence of significant genetic changes in their core genome, suggest an ongoing flow of both mobile elements and E. coli lineages between human and natural ecosystems.
Keywords: CRISPR-Cas; E. coli; PLACNETw; WGS; antimicrobial resistance; wild animals.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
). Boxes with the same color represent spacers that appear in ≥2 strains. There were no overlapping spacer sequences between CRISPR 1, 2, 3 and 4 arrays, thus colors must be independently interpreted for each array. The different symbols indicate spacers matching at least 88% with phages (∆), plasmids (●) or IS (~)-like sequences in databases. Origin: deer (D); bird of prey (BP); rodent (R); wild boar (WB). CRISPR/cas I-E (A, A *, B, C) and I-F1 structures (A, B) as well as cas genes clusters (E1, E2, F, F*) correspond to those represented in Supplementary Materials Figures S1 and S2, respectively. ND: non-determined.
References
-
- Touchon M., Hoede C., Tenaillon O., Barbe V., Baeriswyl S., Bidet P., Bingen E., Bonacorsi S., Bouchier C., Bouvet O., et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 2009;5:e1000344. doi: 10.1371/journal.pgen.1000344. - DOI - PMC - PubMed
-
- Johnson J.R., Kuskowski M.A., Gaiewski A., Sahm D.F., Karlowsky J.A. Virulence characteristics and phylogenetic background of multidrug-resistant and antimicrobial-susceptible clinical isolates of Escherichia coli from across the United States 2000–2001. J. Infect. Dis. 2004;190:1739–1744. doi: 10.1086/425018. - DOI - PubMed
