Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Sep;168(3):827-36.
doi: 10.1148/radiology.168.3.3406412.

Short-Ti inversion-recovery pulse sequence: analysis and initial experience in cancer imaging

Affiliations

Short-Ti inversion-recovery pulse sequence: analysis and initial experience in cancer imaging

A J Dwyer et al. Radiology. 1988 Sep.

Abstract

Inversion recovery (IR), commonly considered a pulse sequence capable of producing T1-weighted images with excellent display of normal anatomy, is versatile: The null point and peak time provide a useful, succinct summary of the properties of IR and its capacity for producing both T1- and T2-weighted images. Shortening of the inversion time (TI) and creation of a short-TI inversion-recovery (STIR) pulse sequence increases sensitivity to malignancy and other abnormalities by making the effects of prolonged T1 and T2 on signal intensity additive and by nulling the signal from fat. The authors examined over 300 patients with various malignancies and compared STIR images with T1- and T2-weighted images obtained at 0.5 T. In 43 cases, signal-difference-to-noise ratios (SD/Ns) were calculated between tumor, fat, and muscle. In general, STIR images demonstrated tumor as a conspicuously high-intensity area in a background of muted, discernible anatomic detail. The good contrast achieved with STIR sequences between tumor and fat (SD/N = 18.1) and tumor and muscle (SD/N = 12.9) consolidated into a single image the information contained separately on T1- and T2-weighted images, which facilitates efficient detection and localization of malignancy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources