Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 20;18(10):5457.
doi: 10.3390/ijerph18105457.

Consumption of Ultra-Processed Food and Drinks and Chronic Lymphocytic Leukemia in the MCC-Spain Study

Affiliations

Consumption of Ultra-Processed Food and Drinks and Chronic Lymphocytic Leukemia in the MCC-Spain Study

Marta Solans et al. Int J Environ Res Public Health. .

Abstract

Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults in Western countries. Its etiology is largely unknown but increasing incidence rates observed worldwide suggest that lifestyle and environmental factors such as diet might play a role in the development of CLL. Hence, we hypothesized that the consumption of ultra-processed food and drinks (UPF) might be associated with CLL. Data from a Spanish population-based case-control study (MCC-Spain study) including 230 CLL cases (recruited within three years of diagnosis) and 1634 population-based controls were used. The usual diet during the previous year was collected through a validated food frequency questionnaire and food and drink consumption was categorized using the NOVA classification scheme. Logistic regression models adjusted for potential confounders were used. Overall, no association was reported between the consumption of UPF and CLL cases (OR per each 10% increase of the relative contribution of UPF to total dietary intake = 1.09 (95% CI: 0.94; 1.25)), independently of the Rai stage at diagnosis. However, when analyses were restricted to cases diagnosed within <1 year (incident), each 10% increment in the consumption of UPF was associated with a 22% higher odds ratio of CLL (95% CI: 1.02, 1.47) suggesting that the overall results might be affected by the inclusion of prevalent cases, who might have changed their dietary habits after cancer diagnosis. Given the low number of cases in the subgroup analyses and multiple tests performed, chance findings cannot totally be ruled out. Nonetheless, positive associations found in CLL incident cases merit further research, ideally in well-powered studies with a prospective design.

Keywords: NOVA classification; cancer; case-control study; chronic lymphocytic leukemia; ultra-processed food.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Association between a 10% increment in the consumption of ultra-processed food and drink and chronic lymphocytic leukemia in the MCC-Spain study, further adjusted for nutritional characteristics for all cases (top graph) and restricted to cases recruited within one year of diagnosis (incident; bottom graph). OR, odds ratio; 95% CI, 95% confidence interval; CLL, chronic lymphocytic leukemia; UPF, ultra-processed food and drinks. 1 Logistic regression adjusted for age, sex, province, educational level, family history of hematological neoplasms, ever worked in farming, physical activity, energy intake, ethanol intake and smoking status. Black squares and horizontal lines indicate the OR and 95% CI, respectively.

Similar articles

Cited by

References

    1. Sant M., Allemani C., Tereanu C., De Angelis R., Capocaccia R., Visser O., Marcos-Gragera R., Maynadié M., Simonetti A., Lutz J.-M., et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood. 2010;116:3724–3734. doi: 10.1182/blood-2010-05-282632. - DOI - PubMed
    1. Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019;94:1266–1287. doi: 10.1002/ajh.25595. - DOI - PubMed
    1. Slager S.L., Benavente Y., Blair A., Vermeulen R., Cerhan J.R., Costantini A.S., Monnereau A., Nieters A., Clavel J., Call T.G., et al. Medical History, Lifestyle, Family History, and Occupational Risk Factors for Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: The InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014:41–51. doi: 10.1093/jncimonographs/lgu001. - DOI - PMC - PubMed
    1. Anderson J.R., Armitage J.O., Weisenburger D.D. Epidemiology of the non-Hodgkin’s lymphomas: Distributions of the major subtypes differ by geographic locations. Ann. Oncol. 1998;9:717–720. doi: 10.1023/A:1008265532487. - DOI - PubMed
    1. Dong Y., Shi O., Zeng Q., Lu X., Wang W., Li Y., Wang Q. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp. Hematol. Oncol. 2020;9:14. doi: 10.1186/s40164-020-00170-6. - DOI - PMC - PubMed

Publication types