Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 20;11(5):456.
doi: 10.3390/life11050456.

The Use of Response Surface Methodology as a Statistical Tool for the Optimisation of Waste and Pure Canola Oil Biodegradation by Antarctic Soil Bacteria

Affiliations

The Use of Response Surface Methodology as a Statistical Tool for the Optimisation of Waste and Pure Canola Oil Biodegradation by Antarctic Soil Bacteria

Khadijah Nabilah Mohd Zahri et al. Life (Basel). .

Abstract

Hydrocarbons can cause pollution to Antarctic terrestrial and aquatic ecosystems, both through accidental release and the discharge of waste cooking oil in grey water. Such pollutants can persist for long periods in cold environments. The native microbial community may play a role in their biodegradation. In this study, using mixed native Antarctic bacterial communities, several environmental factors influencing biodegradation of waste canola oil (WCO) and pure canola oil (PCO) were optimised using established one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The factors include salinity, pH, type of nitrogen and concentration, temperature, yeast extract and initial substrate concentration in OFAT and only the significant factors proceeded for the statistical optimisation through RSM. High concentration of substrate targeted for degradation activity through RSM compared to OFAT method. As for the result, all factors were significant in PBD, while only 4 factors were significant in biodegradation of PCO (pH, nitrogen concentration, yeast extract and initial substrate concentration). Using OFAT, the most effective microbial community examined was able to degrade 94.42% and 86.83% (from an initial concentration of 0.5% (v/v)) of WCO and PCO, respectively, within 7 days. Using RSM, 94.99% and 79.77% degradation of WCO and PCO was achieved in 6 days. The significant interaction for the RSM in biodegradation activity between temperature and WCO concentration in WCO media were exhibited. Meanwhile, in biodegradation of PCO the significant factors were between (1) pH and PCO concentration, (2) nitrogen concentration and yeast extract, (3) nitrogen concentration and PCO concentration. The models for the RSM were validated for both WCO and PCO media and it showed no significant difference between experimental and predicted values. The efficiency of canola oil biodegradation achieved in this study provides support for the development of practical strategies for efficient bioremediation in the Antarctic environment.

Keywords: Antarctic bacterial consortium; one-factor-at-a-time; pure canola oil; response surface methodology; waste canola oil.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Percentage of (a) WCO and (b) PCO degradation by Antarctic bacterial consortia obtained from 28 soil samples over a 5 days incubation period.
Figure 2
Figure 2
Effect of (a) salt concentration, (b) pH (dotted lines: acetate, solid lines: phosphate, dashed lines: Tris-HCl), (c) different nitrogen sources, (d) ammonium sulphate concentration, (e) temperature, (f) yeast extract, (g) initial substrate concentration on bacterial growth (filled circles) and WCO degradation (filled triangles).
Figure 2
Figure 2
Effect of (a) salt concentration, (b) pH (dotted lines: acetate, solid lines: phosphate, dashed lines: Tris-HCl), (c) different nitrogen sources, (d) ammonium sulphate concentration, (e) temperature, (f) yeast extract, (g) initial substrate concentration on bacterial growth (filled circles) and WCO degradation (filled triangles).
Figure 2
Figure 2
Effect of (a) salt concentration, (b) pH (dotted lines: acetate, solid lines: phosphate, dashed lines: Tris-HCl), (c) different nitrogen sources, (d) ammonium sulphate concentration, (e) temperature, (f) yeast extract, (g) initial substrate concentration on bacterial growth (filled circles) and WCO degradation (filled triangles).
Figure 2
Figure 2
Effect of (a) salt concentration, (b) pH (dotted lines: acetate, solid lines: phosphate, dashed lines: Tris-HCl), (c) different nitrogen sources, (d) ammonium sulphate concentration, (e) temperature, (f) yeast extract, (g) initial substrate concentration on bacterial growth (filled circles) and WCO degradation (filled triangles).
Figure 3
Figure 3
Effect of (a) salt concentration, (b) pH (dotted lines: acetate, solid lines: phosphate, dashed lines: Tris-HCl), (c) different nitrogen sources, (d) ammonium sulphate concentration, (e) temperature, (f) yeast extract, (g) initial substrate concentration on bacterial growth (filled circles) and PCO degradation (filled triangles/grey squares).
Figure 3
Figure 3
Effect of (a) salt concentration, (b) pH (dotted lines: acetate, solid lines: phosphate, dashed lines: Tris-HCl), (c) different nitrogen sources, (d) ammonium sulphate concentration, (e) temperature, (f) yeast extract, (g) initial substrate concentration on bacterial growth (filled circles) and PCO degradation (filled triangles/grey squares).
Figure 3
Figure 3
Effect of (a) salt concentration, (b) pH (dotted lines: acetate, solid lines: phosphate, dashed lines: Tris-HCl), (c) different nitrogen sources, (d) ammonium sulphate concentration, (e) temperature, (f) yeast extract, (g) initial substrate concentration on bacterial growth (filled circles) and PCO degradation (filled triangles/grey squares).
Figure 3
Figure 3
Effect of (a) salt concentration, (b) pH (dotted lines: acetate, solid lines: phosphate, dashed lines: Tris-HCl), (c) different nitrogen sources, (d) ammonium sulphate concentration, (e) temperature, (f) yeast extract, (g) initial substrate concentration on bacterial growth (filled circles) and PCO degradation (filled triangles/grey squares).
Figure 4
Figure 4
Three-dimensional (3D) response surface plots for the significant factors identified in CCD as influencing degradation of WCO ((a): temperature and initial WCO concentration) and PCO degradation ((b): pH and initial PCO concentration, (c): (NH4)2SO4 concentration and yeast extract, (d): (NH4)2SO4 concentration and initial PCO concentration) by the BS14 Antarctic bacterial consortium.
Figure 4
Figure 4
Three-dimensional (3D) response surface plots for the significant factors identified in CCD as influencing degradation of WCO ((a): temperature and initial WCO concentration) and PCO degradation ((b): pH and initial PCO concentration, (c): (NH4)2SO4 concentration and yeast extract, (d): (NH4)2SO4 concentration and initial PCO concentration) by the BS14 Antarctic bacterial consortium.
Figure 4
Figure 4
Three-dimensional (3D) response surface plots for the significant factors identified in CCD as influencing degradation of WCO ((a): temperature and initial WCO concentration) and PCO degradation ((b): pH and initial PCO concentration, (c): (NH4)2SO4 concentration and yeast extract, (d): (NH4)2SO4 concentration and initial PCO concentration) by the BS14 Antarctic bacterial consortium.

Similar articles

Cited by

References

    1. Shahbandeh M. Vegetable Oils: Production Worldwide 2012/13–2019/20, by Type. [(accessed on 15 July 2020)];2020 Available online: https://www.statista.com/statistics/263933/production-of-vegetable-oils-....
    1. Gunstone F.D. Vegetable Oils in Foods Technology: Composition, Properties and Uses. Blackwell Publishing Ltd.; Hoboken, NJ, USA: 2002. pp. 107–133.
    1. Hageman G., Kikken R., Ten H.F., Kleinjans J. Assessment of mutagenic activity of repeatedly used deep-frying fats. Mutat. Res. 1988;204:593–604. doi: 10.1016/0165-1218(88)90062-6. - DOI - PubMed
    1. Ananey-Obiri D., Matthews L., Azahrani M.H., Ibrahim S.A., Galanakis C.M., Tahergorabi R. Application of protein-based edible coatings for fat uptake reduction in deep-fat fried foods with an emphasis on muscle food proteins. Trends Food Sci. Technol. 2018;80:167–174. doi: 10.1016/j.tifs.2018.08.012. - DOI
    1. Australia Antarctic Division Pollution and Waste. Department of the Environment and Energy. [(accessed on 12 December 2018)];2012 Available online: https://www.antarctica.gov.au.