Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jun;72(3):347-59.
doi: 10.1016/0034-5687(88)90093-x.

Carotid sinus receptors participate in glucose homeostasis

Affiliations

Carotid sinus receptors participate in glucose homeostasis

R Alvarez-Buylla et al. Respir Physiol. 1988 Jun.

Abstract

This paper describes (a) the influence of glucose on carotid chemoreceptor activity, and (b) the participation of carotid receptors in glucose homeostasis. After eliminating the carotid body baroreceptors in anesthetized cats, the injection of glucose to the vascularly isolated carotid sinus region reduced by 20% the electrical activity of carotid body chemoreceptors and increased their threshold to hypoxia. Mannitol in the same concentration did not change the chemoreceptor activity. A decrease in baroreceptor activity elicited by carotid occlusion, or carotid chemoreceptor stimulation with 50 micrograms/kg cyanide (NaCN), produced an immediate increase in the output of hepatic glucose, raising the hepatic venous-arterial glucose difference above basal levels. Bilateral adrenalectomy eliminated these reflex responses. Cyanide injected in the same conditions caused a sharp increase in glucose retention by the brain. In control experiments, after sectioning the carotid nerve, NaCN injections were ineffective. However, electrical stimulation of the central stump of carotid nerve elicited reflex effects similar to those obtained with NaCN stimulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources