Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 22;26(11):3100.
doi: 10.3390/molecules26113100.

Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications

Affiliations
Review

Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications

Daniela Perrone et al. Molecules. .

Abstract

The click azide = alkyne 1,3-dipolar cycloaddition (click chemistry) has become the approach of choice for bioconjugations in medicinal chemistry, providing facile reaction conditions amenable to both small and biological molecules. Many nucleoside analogs are known for their marked impact in cancer therapy and for the treatment of virus diseases and new targeted oligonucleotides have been developed for different purposes. The click chemistry allowing the tolerated union between units with a wide diversity of functional groups represents a robust means of designing new hybrid compounds with an extraordinary diversity of applications. This review provides an overview of the most recent works related to the use of click chemistry methodology in the field of nucleosides, nucleotides and nucleic acids for pharmacological applications.

Keywords: 1,2,3-trizole; azide-alkyne cycloaddition; bioisosteres; click chemistry; nucleic acid; nucleosides; oligonucleotides; pharmaceutical approach.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Synthetic routes to 1,2,3-triazoles: (A): R2 = H, alkyl or aryl group; (B,C): R2 = H; (D): R1 = -(CH2)3CH(R3)-R2-, R2 = -(CH2)2-R1-, R3 = alkyl or aryl group.
Figure 2
Figure 2
Molecular structure of nucleosides functionalized with alkyne- or azide-reactive handles: (a) commercially available; (b) reported in Reference [29].
Scheme 1
Scheme 1
Synthetic scheme for the preparation of adenosine-based bile acid conjugates. Reagents and conditions: (a) CuSO4·5H2O, sodium ascorbate, 1:1:1.5 H2O/t-BuOH /THF (v/v), 25 °C, 18 h (15a 72% yield, 15b 78% yield).
Scheme 2
Scheme 2
Synthetic scheme for preparation of hybrid 17. Reaction conditions: (a) CuSO4·5H2O, sodium ascorbate, 1:1:1.5 H2O/t-BuOH/THF (v/v), 25 °C, 18 h (56% yield).
Scheme 3
Scheme 3
Synthetic scheme for preparation of hybrid 20 and 21. Reaction conditions: (a) sodium ascorbate, CuSO4·5H2O, EtOH/H2O, r. t., 16 h; (20 51% yield; 21 42% yield).
Scheme 4
Scheme 4
Synthetic scheme for the preparation of compound 24. Reaction conditions: (a) sodium ascorbate (1.2 eq), CuSO4 (0.2 eq.), DMF/H2O, 24 h; (14% yield).
Scheme 5
Scheme 5
Synthetic scheme for preparation of compound 27a,b and 28a,b. Click reaction conditions: DIPEA, sodium ascorbate (0.3 eq.), CuSO4·5H2O (0.1 eq.), t-BuOH/H2O 3:1, r.t., 16 h, (50–60% yield).
Scheme 6
Scheme 6
Synthetic scheme for preparation of compound 31 (a) CuI (1.5 eq.), DIPEA (3 eq.), toluene, 50 °C, 16 h, (68% yield).
Scheme 7
Scheme 7
Reagents and conditions: (a) for β-34a,b: propargyl alcohol, (EtO)3P·CuI, 1:1 toluene/THF, 24 h, reflux; for α-35a: propargyl alcohol, CuSO4 (0.2 eq.), sodium ascorbate (0.4 eq.), THF, H2O, 20–25 min, reflux; for α-35b: propargyl alcohol, CuSO4 (0.2 eq.), sodium ascorbate (0.4 eq.), t-BuOH, H2O, 20 h, 50 °C; (b) 40, DCI, MeCN, 45 min, r. t. (c) t-BuOOH, decane, MeCN, 45 min, r.t.; then Et2NH, MeCN, 45 min, r.t.; (d) NH4OH, MeCN, 18 h, r.t. DCI: 4,5-dicyanoimidazole.
Scheme 8
Scheme 8
Click reaction conditions: CuI, DIPEA, H2O/t-BuOH/CH3CN (43a 42% yield, 43b 49% yield).
Scheme 9
Scheme 9
(a) Methyl propiolate, CuI/DIPEA, HOAc, CH2Cl2, 0 °C to r.t., 1 h (95% yield); (b) NH3·MeOH, r.t., 48 h; (c) PPh3/I2/imidazole, CH2Cl2, 0–35 °C, 4 h; (d) DBU, THF, 65 °C, 24 h; (e) ICl/NaN3, THF, 0 °C to r.t., 8 h; (f) BzCl, DMAP, Et3N, CH2Cl2, 0 °C, 20 min; (g) m-CPBA, m-CBA, n-Bu4NHSO4/K2HPO4, CH2Cl2, 0 °C to r.t., 16 h; (h) Ni(CH3COO)2·4H2O, HOAc, reflux, 7 h; (i) NH3/MeOH, 24 h.
Scheme 10
Scheme 10
Reaction conditions: (a) Ph-Me, 110 °C, 24 h, (95% yield); (b) NH3 aq., 1,4 dioxane, reflux, 48 h, (43% yield); (c) Dowex 500WX8, MeOH/H2O, 50 °C, 12 h, (72% yield).
Scheme 11
Scheme 11
Reaction conditions: (a) Ph-Me, 110 °C, 24 h.
Scheme 12
Scheme 12
Synthetic scheme for the preparation of hybrid 56 and 58. Yields after RP HPLC purification 56: 98%; 58: 96%.
Scheme 13
Scheme 13
Synthetic scheme for preparation of 61. Reaction conditions: (a) DMSO, r.t., 5 min, (70% yield).
Scheme 14
Scheme 14
Synthetic scheme for preparation of 64. Reaction conditions: (a) sodium ascorbate, CuSO4·5H2O; (b) (COCl)2, DMSO, TEA; (c) CH3COC(=N)2PO(OCH3)2 (Ohira-Bestmann reagent), K2CO3, MeOH; (d) Pd(PPh3)4, TEA, DMF.
Scheme 15
Scheme 15
Best reaction conditions for the synthesis of 65: (a): sodium ascorbate, CuSO4, DMF/H2O (9:1), 90 °C, 5 h; (62% yield).
Scheme 16
Scheme 16
Synthetic scheme for preparation of hybrids 6870. Reaction conditions: (a) sodium ascorbate, CuSO4·5H2O, t-BuOH/THF/H2O (3:1:1); (68: 63% yield; 69: 49% yield; 70: 68% yield).
Figure 3
Figure 3
Structure of natural nucleic acids (A) and triazole-linked analogues (B). The natural O-P-O phosphate linkage is substituted by an artificial N-C-C triazole linkage.
Scheme 17
Scheme 17
Synthesis of triazole-linked dinucleotides. Reaction conditions: (a) CuBr·SMe2, t-BuOH, DMF, rt; (b) EtN(i-Pr)2, ClP(OCH2CH2CN)N(i-Pr)2, CH2Cl2, r.t. The triazole linkage is represented as t.
Scheme 18
Scheme 18
Synthesis of the triazole-linked morpholino dinucleotide. Reaction conditions: (a) CuI, THF:t-BuOH:H2O (3:2:1), μW, 80 °C, 1 h; (b) EtN(i-Pr)2, ClP(OCH2CH2CN)N(i-Pr)2, DMAP, THF, r.t.
Scheme 19
Scheme 19
Synthesis of triazole-linked LNA dinucleotides. Reaction conditions: (a) CuSO4·5H2O, sodium ascorbate, THF:t-BuOH:H2O (1:1:1), r.t (yield: 91–92%); (b) DMTrCl, pyridine, r.t. (yield: 77–83%); (c) EtN(i-Pr)2, ClP(OCH2CH2CN)N(i-Pr)2, CH2Cl2, r.t.
Scheme 20
Scheme 20
(A): Synthesis of triazole 3′-LNA: (B): Synthesis of triazole 5′-LNA. Reaction conditions: (a) CuSO4, sodium ascorbate, tris-(3-hydroxypropyltriazolylmethyl)amine (TBTA).
Scheme 21
Scheme 21
Split-and-click approach to modified sgRNAs. Click reaction conditions: (a) MgCl2, fresh ascorbic acid, CuSO4- tris-(3-hydroxypropyltriazolylmethyl)amine, triethylammonium acetate buffer (pH 7): DMSO (1:1), r.t., 1–2 h.
Scheme 22
Scheme 22
Solid-phase synthesis of 5′ alkyne modified oligonucleotide and CuAAC reaction: (a) alkynyl linker, PvCl, MeCN/Py (3:1), 5 min, r.t.; (b) I2/Py/H2O, 15 min, r.t. or S8, Et3N, BSA, r.t. 30 min; (c) 3.5% DCA in DCM, 2 min, r.t.; (d) HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate), NMM (N-Methylmorpholine), DMF, 30 min, r.t.; (e) azide (2 eq.), CuBr·Me2S (2.5 eq.),. DIPEA, (1,25 eq.) tBuOH/H2O/DMSO (1:1:1) r.t. 2 min.; (f) NH3 in MeOH, r.t. 16 h.
Scheme 23
Scheme 23
Solid-phase CuAAC conjugation of oligonucleotides. Reagents and conditions: (a) solid-phase synthesis at 1 µmol scale, tetraazide (20 eq.), CuI·P(EtO)3 (2 eq.), 2 h, r.t. (b) solid-phase synthesis at 1 µmol scale, GalNAc-alkyne (10 eq.), CuI·P(EtO)3 (2 eq.), 2 h, r.t. (76.5% overall yield). (c) 1,2-ethylenediamine 2 h. (d) solid-phase synthesis at 1 µmol scale, tris-GalNAc-alkyne, (10 eq.), CuI·P(EtO)3, (2 eq.)2 h, r.t.
Scheme 24
Scheme 24
Conjugation of squalene and solanesol to small interfering RNA through SPAAC. Reaction conditions: (a) azide (50 eq.), DMSO/H2O/acetone, r.t. 12 h for 95 and 18 h for 96 (95% conversion).
Scheme 25
Scheme 25
A representative example of orthogonal amidation and cycloaddition approach to heavy modified siRNA: (a) amidation. (b) Deprotection and resin cleavage. (c) Click reaction: CuBr·Me2S, ACN/H2O (2:8) 50 °C, 8 h.
Scheme 26
Scheme 26
Conjugation of vitamin B12 with 2′OMeRNA. Click reaction conditions: (a) N3-RNA. (0.5 eq.), Cu-TBTA (1.5 eq.), ascorbic acid (6 eq.), DMSO/triethylammonium acetate buffer (pH 7), (1:1) r.t. 20 h.
Scheme 27
Scheme 27
Synthesis of boron-cluster-modified anti-EGFR antisense oligonucleotides. Click reaction conditions: azide (50 eq.), CuSO4/TBTA (1:1) (25 eq.), NaAsc (40 eq.), DMSO/tBuOH/H2O (3:1:1), 4 h, r.t. (61% yield).
Scheme 28
Scheme 28
Synthesis of modified Pip6a-PMO. Reaction conditions: (a) Cu-TBTA (12 eq.), 113ab (1.2 eq.), NaAsc (10 eq.), r.t., 6 h.
Figure 4
Figure 4
DART-Nrf2 multifunctional oligonucleotide.
Scheme 29
Scheme 29
Nucleobase-modified aptamers. (A) reaction conditions: (a) 1:4 CuSO4/THPTA (0.1 eq. in respect to 114), phosphate buffer/DMSO (pH 7), 37 °C, 1 h; (B): click-SELEX cycle representation.
Scheme 30
Scheme 30
Gint4.T-MP conjugation. Click reaction conditions: (a) CuSO4·5H2O, ascorbic acid, PMDETA, Tris HCl, pH 7.5 buffer, r.t. 2 h, argon atmosphere.

References

    1. Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. - DOI - PubMed
    1. Kolb H.C., Finn M.G., Sharpless K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. - DOI - PubMed
    1. Tornøe C.W., Christensen C., Meldal M. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002;67:3057–3064. doi: 10.1021/jo011148j. - DOI - PubMed
    1. Huisgen R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. Engl. 1963;2:565–598. doi: 10.1002/anie.196305651. - DOI
    1. Huisgen R. 1,3-Dipolar cycloaddition chemistry. Volumes 1 and 2. Edited by Albert Padwa. John Wiley and Sons. New York, 1984. Volume 1: XIII + 817 pages. Volume 2: XIII + 704 pages. ISBN 0-471-08364-X (set). $295.00 for the two-volume set. J. Heterocycl. Chem. 1986;23:1899. doi: 10.1002/jhet.5570230658. - DOI