Machine Learning and Radiomics Applications in Esophageal Cancers Using Non-Invasive Imaging Methods-A Critical Review of Literature
- PMID: 34069367
- PMCID: PMC8158761
- DOI: 10.3390/cancers13102469
Machine Learning and Radiomics Applications in Esophageal Cancers Using Non-Invasive Imaging Methods-A Critical Review of Literature
Abstract
Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.
Keywords: esophageal neoplasms; machine learning; radiology.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

Similar articles
-
Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.EBioMedicine. 2021 Jul;69:103460. doi: 10.1016/j.ebiom.2021.103460. Epub 2021 Jul 4. EBioMedicine. 2021. PMID: 34233259 Free PMC article. Clinical Trial.
-
Radiomics diagnostic performance for predicting lymph node metastasis in esophageal cancer: a systematic review and meta-analysis.BMC Med Imaging. 2024 Jun 12;24(1):144. doi: 10.1186/s12880-024-01278-5. BMC Med Imaging. 2024. PMID: 38867143 Free PMC article.
-
The application of radiomics in esophageal cancer: Predicting the response after neoadjuvant therapy.Front Oncol. 2023 Apr 6;13:1082960. doi: 10.3389/fonc.2023.1082960. eCollection 2023. Front Oncol. 2023. PMID: 37091180 Free PMC article. Review.
-
Prediction of Individual Lymph Node Metastatic Status in Esophageal Squamous Cell Carcinoma Using Routine Computed Tomography Imaging: Comparison of Size-Based Measurements and Radiomics-Based Models.Ann Surg Oncol. 2022 Dec;29(13):8117-8126. doi: 10.1245/s10434-022-12207-7. Epub 2022 Aug 26. Ann Surg Oncol. 2022. PMID: 36018524
-
Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis.BMC Cancer. 2021 Sep 26;21(1):1058. doi: 10.1186/s12885-021-08773-w. BMC Cancer. 2021. PMID: 34565338 Free PMC article.
Cited by
-
A CT-based subregional radiomics nomogram for predicting local recurrence-free survival in esophageal squamous cell cancer patients treated by definitive chemoradiotherapy: a multicenter study.J Transl Med. 2024 Dec 5;22(1):1108. doi: 10.1186/s12967-024-05897-y. J Transl Med. 2024. PMID: 39639328 Free PMC article.
-
Recurrence risk stratification for locally advanced cervical cancer using multi-modality transformer network.Front Oncol. 2023 Feb 16;13:1100087. doi: 10.3389/fonc.2023.1100087. eCollection 2023. Front Oncol. 2023. PMID: 36874136 Free PMC article.
-
Radiomics applications in the modern management of esophageal squamous cell carcinoma.Med Oncol. 2025 May 27;42(7):221. doi: 10.1007/s12032-025-02775-5. Med Oncol. 2025. PMID: 40425893 Review.
-
Atom Search Optimization with the Deep Transfer Learning-Driven Esophageal Cancer Classification Model.Comput Intell Neurosci. 2022 Sep 16;2022:4629178. doi: 10.1155/2022/4629178. eCollection 2022. Comput Intell Neurosci. 2022. Retraction in: Comput Intell Neurosci. 2023 Aug 9;2023:9870789. doi: 10.1155/2023/9870789. PMID: 36156959 Free PMC article. Retracted.
-
Contrast-enhanced CT radiomics combined with multiple machine learning algorithms for preoperative identification of lymph node metastasis in pancreatic ductal adenocarcinoma.Front Oncol. 2024 Sep 13;14:1342317. doi: 10.3389/fonc.2024.1342317. eCollection 2024. Front Oncol. 2024. PMID: 39346735 Free PMC article.
References
-
- Van Hagen P., Hulshof M., Van Lanschot J., Steyerberg E., Henegouwen M.V.B., Wijnhoven B., Richel D., Nieuwenhuijzen G.A., Hospers G.A.P., Bonenkamp J., et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. N. Engl. J. Med. 2012;366:2074–2084. doi: 10.1056/NEJMoa1112088. - DOI - PubMed
-
- Yang H., Liu H., Chen Y., Zhu C., Fang W., Yu Z., Mao W., Xiang J., Han Y., Chen Z., et al. Neoadjuvant Chemoradiotherapy Followed by Surgery Versus Surgery Alone for Locally Advanced Squamous Cell Carcinoma of the Esophagus (NEOCRTEC5010): A Phase III Multicenter, Randomized, Open-Label Clinical Trial. J. Clin. Oncol. 2018;36:2796–2803. doi: 10.1200/JCO.2018.79.1483. - DOI - PMC - PubMed
-
- Barbetta A., Sihag S., Nobel T., Hsu M., Tan K.S., Bains M., Jones D.R., Molena D. Patterns and risk of recurrence in patients with esophageal cancer with a pathologic complete response after chemoradiotherapy followed by surgery. J. Thorac. Cardiovasc. Surg. 2019;157:1249–1259.e5. doi: 10.1016/j.jtcvs.2018.09.136. - DOI - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources