Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 27;57(6):536.
doi: 10.3390/medicina57060536.

The Potential Mechanisms of High-Velocity, Low-Amplitude, Controlled Vertebral Thrusts on Neuroimmune Function: A Narrative Review

Affiliations
Review

The Potential Mechanisms of High-Velocity, Low-Amplitude, Controlled Vertebral Thrusts on Neuroimmune Function: A Narrative Review

Heidi Haavik et al. Medicina (Kaunas). .

Abstract

The current COVID-19 pandemic has necessitated the need to find healthcare solutions that boost or support immunity. There is some evidence that high-velocity, low-amplitude (HVLA) controlled vertebral thrusts have the potential to modulate immune mediators. However, the mechanisms of the link between HVLA controlled vertebral thrusts and neuroimmune function and the associated potential clinical implications are less clear. This review aims to elucidate the underlying mechanisms that can explain the HVLA controlled vertebral thrust--neuroimmune link and discuss what this link implies for clinical practice and future research needs. A search for relevant articles published up until April 2021 was undertaken. Twenty-three published papers were found that explored the impact of HVLA controlled vertebral thrusts on neuroimmune markers, of which eighteen found a significant effect. These basic science studies show that HVLA controlled vertebral thrust influence the levels of immune mediators in the body, including neuropeptides, inflammatory markers, and endocrine markers. This narravtive review discusses the most likely mechanisms for how HVLA controlled vertebral thrusts could impact these immune markers. The mechanisms are most likely due to the known changes in proprioceptive processing that occur within the central nervous system (CNS), in particular within the prefrontal cortex, following HVLA spinal thrusts. The prefrontal cortex is involved in the regulation of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis and the immune system. Bi-directional neuro-immune interactions are affected by emotional or pain-related stress. Stress-induced sympathetic nervous system activity also alters vertebral motor control. Therefore, there are biologically plausible direct and indirect mechanisms that link HVLA controlled vertebral thrusts to the immune system, suggesting HVLA controlled vertebral thrusts have the potential to modulate immune function. However, it is not yet known whether HVLA controlled vertebral thrusts have a clinically relevant impact on immunity. Further research is needed to explore the clinical impact of HVLA controlled vertebral thrusts on immune function.

Keywords: HVLA; central nervous system; chiropractic; endocrine system; high-velocity; immune system; low-amplitude thrust; prefrontal cortex; spinal manipulation.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Illustration demonstrating the HVLA controlled vertebral thrust–immune system link. PFC: Prefrontal cortex, HPA: Hypothalamus–pituitary–adrenal axis, ANS: Autonomic nervous system, SNS: Sympathetic nervous system, PNS: Parasympathetic nervous system, CRH: Corticotrophin releasing hormone, ACTH: Adreno–corticotropic hormone, IL: Interleukin.

Similar articles

Cited by

References

    1. Ranasinghe C., Ozemek C., Arena R. Exercise and well-being during COVID 19-Time to boost your immunity. Expert Rev. Anti Infect. Ther. 2020 doi: 10.1080/14787210.2020.1794818. - DOI - PubMed
    1. Wortham J.M., Lee J.T., Althomsons S., Latash J., Davidson A., Guerra K. Characteristics of Persons Who Died with COVID-19—United States, February 12–May 18, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020;69:923–929. doi: 10.15585/mmwr.mm6928e1. - DOI - PubMed
    1. Lai Q., Spoletini G., Bianco G., Graceffa D., Agnes S., Rossi M., Lerut J. SARS-CoV2 and immunosuppression: A double-edged sword. Transpl. Infect. Dis. 2020 doi: 10.1111/tid.13404. - DOI - PMC - PubMed
    1. Sadia A., Basra M.A.R. Therapeutic dilemma in the repression of severe acute respiratory syndrome coronavirus-2 proteome. Drug Dev. Res. 2020 doi: 10.1002/ddr.21710. - DOI - PMC - PubMed
    1. Florindo H.F., Kleiner R., Vaskovich-Koubi D., Acúrcio R.C., Carreira B., Yeini E., Tiram G., Liubomirski Y., Satchi-Fainaro R. Immune-mediated approaches against COVID-19. Nat. Nanotechnol. 2020 doi: 10.1038/s41565-020-0732-3. - DOI - PMC - PubMed