Effects of Encapsulated Methionine on Skeletal Muscle Growth and Development and Subsequent Feedlot Performance and Carcass Characteristics in Beef Steers
- PMID: 34072859
- PMCID: PMC8227968
- DOI: 10.3390/ani11061627
Effects of Encapsulated Methionine on Skeletal Muscle Growth and Development and Subsequent Feedlot Performance and Carcass Characteristics in Beef Steers
Abstract
Two studies were conducted to evaluate the effect of encapsulated methionine on live performance, carcass characteristics, and skeletal muscle development in feedlot steers. In Experiment 1, 128 crossbred steers (body weight [BW] = 341 ± 36.7 kg) were used in a randomized complete block design and supplemented with 0, 4, 8, or 12 g/(head day [d]) of ruminally protected methionine (0MET, 4MET, 8MET, and 12MET, respectively) for 111 d or 139 d. In Exp. 2, 20 steers (BW = 457 ± 58 kg) were stratified by BW and randomly assigned to either the 0MET or 8MET treatment; longissimus muscle (LM) biopsies were collected on d 0, 14, 28, 42, and 56, and analyzed for mRNA and protein expression. Additionally, immunohistochemical analysis was performed to measure fiber type area and distribution as well as the density of muscle nuclei and satellite cells (Myf5, Pax7, and Myf5/Pax7). In Experiment 1, no significant differences were observed for live performance (p ≥ 0.09). There was, however, a linear relationship between LM area and methionine supplementation (p = 0.04), with a 9% increase in the area when steers were supplemented with 12MET compared to 0MET. In Exp. 2, There were no treatment × day interactions (p ≥ 0.10) for expression of mRNA or protein abundance. Although mRNA expression and protein abundance of all genes were influenced by day (p ≤ 0.04), methionine supplementation did not have a significant effect (p ≥ 0.08). There was a significant treatment × day interaction for distribution of MHC-I fibers (p = 0.03), where 8MET supplemented cattle had a greater proportion of MHC-I fibers after 56 d of supplementation than did 0MET steers. Cross-sectional area was increased over time regardless of fiber type (p < 0.01) but was unaffected by treatment (p ≥ 0.36). While nuclei density was not impacted by treatment (p = 0.55), the density of myonuclei increased nearly 55% in 8MET supplemented cattle (p = 0.05). The density of Myf5 positive satellite cells tended to decrease with methionine supplementation (p = 0.10), while the density of Pax7 expressing cells tended to increase (p = 0.09). These results indicate that encapsulated methionine supplementation may influence markers of skeletal muscle growth, and potential improvements in the LM area may exist.
Keywords: amino acid; beef cattle; methionine; satellite cells.
Conflict of interest statement
J.O.B., A.J.T., M.A.J., Z.K.S. and B.J.J. declare no conflict of interest except for the fact that Kemin provided partial funding for these experiments. J.E.H. and W.R. are employed by Kemin. Funders aided in the initial design of the experiment and played no role in the interpretation of the results or the decision to publish the results.
Figures



References
-
- Friesen K.G., Nelssen J.L., Unruh J.A., Goodband R.D., Tokach M.D. Effects of the interrelationship between genotype, sex, and dietary lysine on growth performance and carcass composition in finishing pigs fed to either 104 or 127 kilograms. J. Anim. Sci. 1994;72:946–954. doi: 10.2527/1994.724946x. - DOI - PubMed
-
- Hosford A.D., Hergenreder J.E., Kim J.K., Baggerman J.O., Ribeiro F.R., Anderson M.J., Spivey K.S., Rounds W., Johnson B.J. Effects of supplemental lysine and methionine with zilpaterol hydrochloride on feedlot performance, carcass merit, and skeletal muscle fiber characteristics in finishing feedlot cattle. J. Anim. Sci. 2015;93:4532–4544. doi: 10.2527/jas.2015-9047. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Research Materials