Sildenafil Counteracts the In Vitro Activation of CXCL-9, CXCL-10 and CXCL-11/CXCR3 Axis Induced by Reactive Oxygen Species in Scleroderma Fibroblasts
- PMID: 34073032
- PMCID: PMC8229934
- DOI: 10.3390/biology10060491
Sildenafil Counteracts the In Vitro Activation of CXCL-9, CXCL-10 and CXCL-11/CXCR3 Axis Induced by Reactive Oxygen Species in Scleroderma Fibroblasts
Abstract
Oxidative stress plays a key role in systemic sclerosis (SSc) pathogenesis, and an altered redox homeostasis might be responsible for abnormal inflammatory status, fibrosis and tissue damage extension. In this study, we explored the effect of the phosphodiesterase type 5 inhibitor sildenafil in modulating the activation of the CXCL-9, -10, -11/CXCR3 axis, which is fundamental in the perpetuation of inflammation in different autoimmune diseases, in the cell culture of SSc human dermal fibroblasts exposed to a pro-oxidant environment. We observed that sildenafil significantly reduced gene expression and release of CXCL-9, -10 and -11, inhibited the CXCR3 action and suppressed the activation of STAT1-, JNK- and p38MAPK pathways. This in vitro study on dermal fibroblasts supports clinical studies to consider the efficacy of sildenafil in preventing tissue damage and fibrosis in SSc by targeting central biomarkers of disease progression, vascular injuries and fibrosis and reducing the pro-inflammatory activation induced by oxidative stress.
Keywords: chemokines; fibrosis; reactive oxygen species; sildenafil; systemic sclerosis.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Corinaldesi C., Ross R., Abignano G., Antinozzi C., Marampon F., Di Luigi L., Buch M., Riccieri V., Lenzi A., Crescioli C., et al. Muscle Damage in Systemic Sclerosis and CXCL10: The Potential Therapeutic Role of PDE5 Inhibition. Int. J. Mol. Sci. 2021;22:2894. doi: 10.3390/ijms22062894. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
