Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 26;7(5):757-767.
doi: 10.1021/acscentsci.1c00216. Epub 2021 Apr 19.

Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines

Affiliations
Review

Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines

Yury Valdes-Balbin et al. ACS Cent Sci. .

Abstract

The development of recombinant COVID-19 vaccines has resulted from scientific progress made at an unprecedented speed during 2020. The recombinant spike glycoprotein monomer, its trimer, and its recombinant receptor-binding domain (RBD) induce a potent anti-RBD neutralizing antibody response in animals. In COVID-19 convalescent sera, there is a good correlation between the antibody response and potent neutralization. In this review, we summarize with a critical view the molecular aspects associated with the interaction of SARS-CoV-2 RBD with its receptor in human cells, the angiotensin-converting enzyme 2 (ACE2), the epitopes involved in the neutralizing activity, and the impact of virus mutations thereof. Recent trends in RBD-based vaccines are analyzed, providing detailed insights into the role of antigen display and multivalence in the immune response of vaccines under development.

PubMed Disclaimer

Conflict of interest statement

The authors declare the following competing financial interest(s): Y.V.-B., D.S.-M, S.F., L.R., B.S.-R., K.L., D.G.-R., D.G.R., and V.V.B. are co-inventors on provisional SARS-CoV-2 vaccine patents including results covered here.

Figures

Figure 1
Figure 1
RBD–ACE2 interaction. (A) Transparent surface and ribbon representation of the SARS-CoV-2 RBD (residues Arg319–Phe541) complexed to the ACE2 N-terminal peptidase domain (residues Ser19–Asp615). The interface ACE2–RBD is colored in green and red, respectively, and the RBM in pink. The arrows indicate four different disulfide bridges able to stabilize the RBD. (B) Amino acids of ACE2 directly interacting with RBD (green). (C) Amino acids of RBD directly interacting with ACE2 (red).
Figure 2
Figure 2
Selected mutations in RBD. (A) Location of each mutated amino acid with respect to the RBM surface (pink). Residues belonging to the ACE2 epitope are highlighted in red, and those without contact with ACE2 are colored in blue. (B) and (D) New interactions associated with N501Y and E484K mutations, respectively. (C) Potential epistatic mutation Q498R associated with N501Y.
Figure 3
Figure 3
RBD epitopes of NAbs and location of the important mutations. (A) Example of antibodies of type 1. NAbs B38 and S2H14 interact with their respective epitopes overlapping the ACE2-binding region. (B) RBD surface (red) delimited by residues interacting with ACE2. (C) Example of antibodies of type 2. NAbs BD23, Fab2-4, S2H13, and P2B-2F6 interact with epitopes exposed in the RBD-down and RBD-up conformations.
Figure 4
Figure 4
(A) Electrostatic potential (red −10, +10 blue) and (B) hydrophobicity (green −20, +20 gold) maps represented on surfaces of the WT RBD and selected mutated RBD. Small circles show the biggest changes induced by mutation.
Figure 5
Figure 5
(A) Comparison of the B-cell response with different types of RBD immunogens. The multivalent RBD display permits cross-linking B-cell receptors leading to a more intense signaling. (B) Representation of the constructions of multivalent-displayed RBD immunogens by chemical conjugation, self-assembling, and ligation processes.

Similar articles

Cited by

References

    1. Zhang Y.; Zhao W.; Mao Y.; Chen Y.; Wang S.; Zhong Y.; Su T.; Gong M.; Du D.; Lu X.; Cheng J.; Yang H. Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins. Mol. Cell Proteomics 2021, 20, 100058.10.1074/mcp.RA120.002295. - DOI - PMC - PubMed
    1. Wang Q.; Zhang Y.; Wu L.; Niu S.; Song C.; Zhang Z.; Lu G.; Qiao C.; Hu Y.; Yuen K. Y.; Wang Q.; Zhou H.; Yan J.; Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020, 181 (4), 894–904. 10.1016/j.cell.2020.03.045. - DOI - PMC - PubMed
    1. Zhou P.; Yang X. L.; Wang X. G.; Hu B.; Zhang L.; Zhang W.; Si H. R.; Zhu Y.; Li B.; Huang C. L.; Chen H. D.; Chen J.; Luo Y.; Guo H.; Jiang R. D.; Liu M. Q.; Chen Y.; Shen X. R.; Wang X.; Zheng X. S.; Zhao K.; Chen Q. J.; Deng F.; Liu L. L.; Yan B.; Zhan F. X.; Wang Y. Y.; Xiao G. F.; Shi Z. L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579 (7798), 270–273. 10.1038/s41586-020-2012-7. - DOI - PMC - PubMed
    1. Muus C.; Luecken M. D.; Eraslan G.; Waghray A.; Heimberg G.; Sikkema L.; Kobayashi Y.; Vaishnav E. D.; Subramanian A.; Smilie C.; Jagadeesh K.; Duong E. T.; Fiskin E.; Triglia E. T.; Ansari M.; Cai P.; Lin B.; Buchanan J.; Chen S.; Shu J.; Haber A. L.; Chung H.; Montoro D. T.; Adams T.; Aliee H.; Samuel J.; Andrusivova A. Z.; Angelidis I.; Ashenberg O.; Bassler K.; Bécavin C.; Benhar I.; Bergenstråhle J.; Bergenstråhle L.; Bolt L.; Braun E.; Bui L. T.; Chaffin M.; Chichelnitskiy E.; Chiou J.; Conlon T. M.; Cuoco M. S.; Deprez M.; Fischer D. S.; Gillich A.; Gould J.; Guo M.; Gutierrez A. J.; Habermann A. C.; Harvey T.; He P.; Hou X.; Hu L.; Jaiswal A.; Jiang P.; Kapellos T.; Kuo C. S.; Larsson L.; Leney-Greene M. A.; Lim K.; Litviňuková M.; Lu J.; Ludwig L. S.; Luo W.; Maatz H.; Madissoon E.; Mamanova L.; Manakongtreecheep K.; Marquette C.-H.; Mbano I.; McAdams A. M.; Metzger R. J.; Nabhan A. N.; Nyquist S. K.; Penland L.; Poirion O. B.; Poli S.; Qi C.; Queen R.; Reichart D.; Rosas I.; Schupp J.; Sinha R.; Sit R. V.; Slowikowski K.; Slyper M.; Smith N.; Sountoulidis A.; Strunz M.; Sun D.; Talavera-López C.; Tan P.; Tantivit J.; Travaglini K. J.; Tucker N. R.; Vernon K.; Wadsworth M. H.; Waldman J.; Wang X.; Yan W.; Zhao W.; Ziegler C. G. K. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv 2020, 10.1101/2020.04.19.049254. - DOI
    1. Coutard B.; Valle C.; de Lamballerie X.; Canard B.; Seidah N. G.; Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020, 176, 104742.10.1016/j.antiviral.2020.104742. - DOI - PMC - PubMed