Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 2;23(6):e25929.
doi: 10.2196/25929.

Evaluation Framework for Successful Artificial Intelligence-Enabled Clinical Decision Support Systems: Mixed Methods Study

Affiliations

Evaluation Framework for Successful Artificial Intelligence-Enabled Clinical Decision Support Systems: Mixed Methods Study

Mengting Ji et al. J Med Internet Res. .

Abstract

Background: Clinical decision support systems are designed to utilize medical data, knowledge, and analysis engines and to generate patient-specific assessments or recommendations to health professionals in order to assist decision making. Artificial intelligence-enabled clinical decision support systems aid the decision-making process through an intelligent component. Well-defined evaluation methods are essential to ensure the seamless integration and contribution of these systems to clinical practice.

Objective: The purpose of this study was to develop and validate a measurement instrument and test the interrelationships of evaluation variables for an artificial intelligence-enabled clinical decision support system evaluation framework.

Methods: An artificial intelligence-enabled clinical decision support system evaluation framework consisting of 6 variables was developed. A Delphi process was conducted to develop the measurement instrument items. Cognitive interviews and pretesting were performed to refine the questions. Web-based survey response data were analyzed to remove irrelevant questions from the measurement instrument, to test dimensional structure, and to assess reliability and validity. The interrelationships of relevant variables were tested and verified using path analysis, and a 28-item measurement instrument was developed. Measurement instrument survey responses were collected from 156 respondents.

Results: The Cronbach α of the measurement instrument was 0.963, and its content validity was 0.943. Values of average variance extracted ranged from 0.582 to 0.756, and values of the heterotrait-monotrait ratio ranged from 0.376 to 0.896. The final model had a good fit (χ262=36.984; P=.08; comparative fit index 0.991; goodness-of-fit index 0.957; root mean square error of approximation 0.052; standardized root mean square residual 0.028). Variables in the final model accounted for 89% of the variance in the user acceptance dimension.

Conclusions: User acceptance is the central dimension of artificial intelligence-enabled clinical decision support system success. Acceptance was directly influenced by perceived ease of use, information quality, service quality, and perceived benefit. Acceptance was also indirectly influenced by system quality and information quality through perceived ease of use. User acceptance and perceived benefit were interrelated.

Keywords: AI; artificial intelligence; clinical decision support systems; evaluation framework.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: None declared.

Figures

Figure 1
Figure 1
Evaluation model hypotheses.
Figure 2
Figure 2
Final evaluation model (comparative fit index 0.991; goodness-of-fit index 0.957; root mean square error of approximation 0.052; standardized root mean square residual 0.028).

Similar articles

Cited by

References

    1. Sim I, Gorman P, Greenes RA, Haynes RB, Kaplan B, Lehmann H, Tang PC. Clinical decision support systems for the practice of evidence-based medicine. J Am Med Inform Assoc. 2001;8(6):527–34. http://jamia.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=11687560 - PMC - PubMed
    1. Haynes RB, Wilczynski NL, Computerized Clinical Decision Support System (CCDSS) Systematic Review Team Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: methods of a decision-maker-researcher partnership systematic review. Implement Sci. 2010 Feb 05;5:12. doi: 10.1186/1748-5908-5-12. https://implementationscience.biomedcentral.com/articles/10.1186/1748-59... - DOI - DOI - PMC - PubMed
    1. Grout RW, Cheng ER, Carroll AE, Bauer NS, Downs SM. A six-year repeated evaluation of computerized clinical decision support system user acceptability. Int J Med Inform. 2018 Apr;112:74–81. doi: 10.1016/j.ijmedinf.2018.01.011. http://europepmc.org/abstract/MED/29500025 - DOI - PMC - PubMed
    1. Jia P, Jia P, Chen J, Zhao P, Zhang M. The effects of clinical decision support systems on insulin use: a systematic review. J Eval Clin Pract. 2020 Aug;26(4):1292–1301. doi: 10.1111/jep.13291. - DOI - PubMed
    1. Daniel G, Silcox C, Sharma I, Wright M. Current state and near-term priorities for ai-enabled diagnostic support software in health care. Duke Margolis Center for Health Policy. 2019. [2019-11-19]. https://healthpolicy.duke.edu/sites/default/files/2019-11/dukemargolisai....

Publication types

LinkOut - more resources