Visible-Light Driven Selective C-N Bond Scission in anti-Bimane-Like Derivatives
- PMID: 34077227
- PMCID: PMC8832495
- DOI: 10.1021/acs.orglett.1c01376
Visible-Light Driven Selective C-N Bond Scission in anti-Bimane-Like Derivatives
Abstract
In the present study, we report the photochemical transformation of pyrazolo[1,2-a]pyrazolone substrates that reach an excited state upon irradiation with visible light to initiate the homolytic C-N bond cleavage process that yields the corresponding N1-substituted pyrazoles. Moreover, chemoselective heterolytic C-N bond cleavage is possible in the pyrazolo[1,2-a]pyrazole core in the presence of bromomalonate.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Unprecedented visible light-initiated topochemical [2 + 2] cycloaddition in a functionalized bimane dye.Beilstein J Org Chem. 2025 Mar 5;21:500-509. doi: 10.3762/bjoc.21.37. eCollection 2025. Beilstein J Org Chem. 2025. PMID: 40079021 Free PMC article.
-
Non-adiabatic behavior in the homolytic and heterolytic bond dissociation of protonated hydrazine: A guided ion beam and theoretical investigation.J Chem Phys. 2017 Sep 28;147(12):124306. doi: 10.1063/1.4997415. J Chem Phys. 2017. PMID: 28964005
-
Synthesis, characterization and in vitro antimicrobial activity of novel fused pyrazolo[3,4-c]pyridazine, pyrazolo[3,4-d]pyrimidine, thieno[3,2-c]pyrazole and pyrazolo[3',4':4,5]thieno[2,3-d]pyrimidine derivatives.Chem Cent J. 2017 Nov 2;11(1):112. doi: 10.1186/s13065-017-0339-4. Chem Cent J. 2017. PMID: 29098473 Free PMC article.
-
pH Dependent Photodeprotection of Formaldehyde: Homolytic C-C Scission in Acidic Aqueous Solution versus Heterolytic C-C Scission in Basic Aqueous Solution.J Org Chem. 2017 Apr 7;82(7):3425-3431. doi: 10.1021/acs.joc.6b02756. Epub 2017 Mar 10. J Org Chem. 2017. PMID: 28224790
-
Visible light generation of high-valent metal-oxo intermediates and mechanistic insights into catalytic oxidations.J Inorg Biochem. 2020 Nov;212:111246. doi: 10.1016/j.jinorgbio.2020.111246. Epub 2020 Sep 8. J Inorg Biochem. 2020. PMID: 33059321 Review.
References
-
-
For recent reviews on visible light-induced photoredox catalysis, see:
- Skubi K. L.; Blum T. R.; Yoon T. P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035.10.1021/acs.chemrev.6b00018. - DOI - PMC - PubMed
- Romero N. A.; Nicewicz D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075.10.1021/acs.chemrev.6b00057. - DOI - PubMed
- Ravelli D.; Protti S.; Fagnoni M. Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chem. Rev. 2016, 116, 9850.10.1021/acs.chemrev.5b00662. - DOI - PubMed
- Lang X.; Zhao J.; Chen X. Cooperative Photoredox Catalysis. Chem. Soc. Rev. 2016, 45, 3026.10.1039/C5CS00659G. - DOI - PubMed
- Kärkäs M. D.; Porco J. A.; Stephenson C. R. J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 2016, 116, 9683.10.1021/acs.chemrev.5b00760. - DOI - PMC - PubMed
- Corrigan N.; Shanmugam S.; Xu J.; Boyer C. Photocatalysis in Organic and Polymer Synthesis. Chem. Soc. Rev. 2016, 45, 6165.10.1039/C6CS00185H. - DOI - PubMed
- Chen J.-R.; Hu X.-Q.; Lu L.-Q.; Xiao W.-J. Visible Light Photoredox-Controlled Reactions of N-Radicals and Radical Ions. Chem. Soc. Rev. 2016, 45, 2044.10.1039/C5CS00655D. - DOI - PubMed
-
-
-
For selected examples using metal-based photocatalysts, see:
- Pirnot M. T.; Rankic D. A.; Martin D. B. C.; MacMillan D. W. C. Photoredox Activation for the Direct β-Arylation of Ketones and Aldehydes. Science 2013, 339, 1593.10.1126/science.1232993. - DOI - PMC - PubMed
- Zuo Z.; Ahneman D. T.; Chu L.; Terrett J. A.; Doyle A. G.; MacMillan D. W. C. Merging Photoredox with Nickel Catalysis: Coupling of α-Carboxyl sp3-Carbons with Aryl Halides. Science 2014, 345, 437.10.1126/science.1255525. - DOI - PMC - PubMed
- Du J.; Skubi K. L.; Schultz D. M.; Yoon T. P. A Dual-Catalysis Approach to Enantioselective [2 + 2] Photocycloadditions Using Visible Light. Science 2014, 344, 392.10.1126/science.1251511. - DOI - PMC - PubMed
- Dai C.; Narayanam J. M. R.; Stephenson C. R. J. Visible-Light-Mediated Conversion of Alcohols to Halides. Nat. Chem. 2011, 3, 140.10.1038/nchem.949. - DOI - PubMed
- Xuan J.; Zeng T.-T.; Feng Z.-J.; Deng Q.-H.; Chen J.-R.; Lu L.-Q.; Xiao W.-J.; Alper H. Redox-Neutral α-Allylation of Amines by Combining Palladium Catalysis and Visible-Light Photoredox Catalysis. Angew. Chem., Int. Ed. 2015, 54, 1625.10.1002/anie.201409999. - DOI - PubMed
- Huang H.; Jia K.; Chen Y. Hypervalent Iodine Reagents Enable Chemoselective Deboronative/Decarboxylative Alkenylation by Photoredox Catalysis. Angew. Chem., Int. Ed. 2015, 54, 1881.10.1002/anie.201410176. - DOI - PubMed
- Musacchio A. J.; Nguyen L. Q.; Beard G. H.; Knowles R. R. Catalytic Olefin Hydroamination with Aminium Radical Cations: A Photoredox Method for Direct C–N Bond Formation. J. Am. Chem. Soc. 2014, 136, 12217.10.1021/ja5056774. - DOI - PubMed
- Zoller J.; Fabry D. C.; Ronge M. A.; Rueping M. Synthesis of Indoles Using Visible Light: Photoredox Catalysis for Palladium-Catalyzed C–H Activation. Angew. Chem., Int. Ed. 2014, 53, 13264.10.1002/anie.201405478. - DOI - PubMed
- Tomita R.; Yasu Y.; Koike T.; Akita M. Combining Photoredox-Catalyzed Trifluoromethylation and Oxidation with DMSO: Facile Synthesis of α-Trifluoromethylated Ketones from Aromatic Alkenes. Angew. Chem., Int. Ed. 2014, 53, 7144.10.1002/anie.201403590. - DOI - PubMed
-
-
-
For selected examples using organic dyes as the photocatalysts, see:
- Romero N. A.; Margrey K. A.; Tay N. E.; Nicewicz D. A. Site-Selective Arene C–H Amination via Photoredox Catalysis. Science 2015, 349, 1326.10.1126/science.aac9895. - DOI - PubMed
- Perkowski A. J.; Cruz C. L.; Nicewicz D. A. Ambient-Temperature Newman–Kwart Rearrangement Mediated by Organic Photoredox Catalysis. J. Am. Chem. Soc. 2015, 137, 15684.10.1021/jacs.5b11800. - DOI - PubMed
- Tröster A.; Alonso R.; Bauer A.; Bach T. Enantioselective Intermolecular [2 + 2] Photocycloaddition Reactions of 2(1H)-Quinolones Induced by Visible Light Irradiation. J. Am. Chem. Soc. 2016, 138, 7808.10.1021/jacs.6b03221. - DOI - PMC - PubMed
- Hari D. P.; Schroll P.; König B. Metal-Free, Visible-Light-Mediated Direct C–H Arylation of Heteroarenes with Aryl Diazonium Salts. J. Am. Chem. Soc. 2012, 134, 2958.10.1021/ja212099r. - DOI - PubMed
- Meng Q.-Y.; Zhong J.-J.; Liu Q.; Gao X.-W.; Zhang H.-H.; Lei T.; Li Z.-J.; Feng K.; Chen B.; Tung C.-H.; Wu L.-Z. A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis. J. Am. Chem. Soc. 2013, 135, 19052.10.1021/ja408486v. - DOI - PubMed
- Guo W.; Lu L.-Q.; Wang Y.; Wang Y.-N.; Chen J.-R.; Xiao W.-J. Metal-Free, Room-Temperature, Radical Alkoxycarbonylation of Aryldiazonium Salts through Visible-Light Photoredox Catalysis. Angew. Chem., Int. Ed. 2015, 54, 2265.10.1002/anie.201408837. - DOI - PubMed
- Xiao T.; Li L.; Lin G.; Wang Q.; Zhang P.; Mao Z.; Zhou L. Synthesis of 6-Substituted Phenanthridines by Metal-Free, Visible-Light Induced Aerobic Oxidative Cyclization of 2-Isocyanobiphenyls with Hydrazines. Green Chem. 2014, 16, 2418.10.1039/C3GC42517G. - DOI
-
-
- Fu M.-C.; Shang R.; Zhao B.; Wang B.; Fu Y. Photocatalytic Decarboxylative Alkylations Mediated by Triphenylphosphine and Sodium Iodide. Science 2019, 363, 1429.10.1126/science.aav3200. - DOI - PubMed
- Liu Q.; Liu F.; Yue H.; Zhao X.; Li J.; Wei W. Photocatalyst-Free Visible Light-Induced Synthesis of β-Oxo Sulfones via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Adv. Synth. Catal. 2019, 361, 5277.10.1002/adsc.201900984. - DOI
- Guillemard L.; Colobert F.; Wencel-Delord J. Visible-Light-Triggered, Metal- and Photocatalyst-Free Acylation of N-Heterocycles. Adv. Synth. Catal. 2018, 360, 4184.10.1002/adsc.201800692. - DOI
LinkOut - more resources
Full Text Sources