Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 16;23(14):5294-5298.
doi: 10.1021/acs.orglett.1c01376. Epub 2021 Jun 2.

Visible-Light Driven Selective C-N Bond Scission in anti-Bimane-Like Derivatives

Affiliations

Visible-Light Driven Selective C-N Bond Scission in anti-Bimane-Like Derivatives

Nejc Petek et al. Org Lett. .

Abstract

In the present study, we report the photochemical transformation of pyrazolo[1,2-a]pyrazolone substrates that reach an excited state upon irradiation with visible light to initiate the homolytic C-N bond cleavage process that yields the corresponding N1-substituted pyrazoles. Moreover, chemoselective heterolytic C-N bond cleavage is possible in the pyrazolo[1,2-a]pyrazole core in the presence of bromomalonate.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Ring Scission of Pyrazolo[1,2-a]pyrazoles
Scheme 2
Scheme 2. C1–N8 and C5–N4 Bond Cleavage of Pyrazolo[1,2-a]pyrazoles
Hydrogens are omitted for clarity. 1 (0.5 mmol), DCM (2.5 mL), LED400nm, 25 °C, under N2 for 24–48 h.
Scheme 3
Scheme 3. C7–N8 Bond Cleavage of Pyrazolo[1,2-a]pyrazoles
Gram scale yield. 1 (0.5 mmol), diethyl bromomalonate (2.0 equiv), 2,6-lutidine (1.5 equiv), DCM (2.5 mL), N2, 18 h.
Scheme 4
Scheme 4. C5–N4 Bond Cleavage of Pyrazolo[1,2-a]pyrazoles
Degassed Me2CO (H2O, 10 equiv). MeOH (anhydrous, degassed, 2.5 mL). THF (anhydrous, degassed, 2.5 mL). [i] H2 (2 bar), 10% Pd(C), 6 h. 1 (0.5 mmol), diethyl bromomalonate (2.0 equiv), DCM (anhydrous, degassed, 2.5 mL), N2, 18 h, HNu (2.0 equiv).
Scheme 5
Scheme 5. Mechanistic Insight

Similar articles

References

    1. Zeitler K. Photoredox Catalysis with Visible Light. Angew. Chem., Int. Ed. 2009, 48, 9785–9789. 10.1002/anie.200904056. - DOI - PubMed
    2. Michelin C.; Hoffmann N. Photosensitization and Photocatalysis–Perspectives in Organic Synthesis. ACS Catal. 2018, 8, 12046.10.1021/acscatal.8b03050. - DOI
    1. For recent reviews on visible light-induced photoredox catalysis, see:

    2. Skubi K. L.; Blum T. R.; Yoon T. P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035.10.1021/acs.chemrev.6b00018. - DOI - PMC - PubMed
    3. Romero N. A.; Nicewicz D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075.10.1021/acs.chemrev.6b00057. - DOI - PubMed
    4. Ravelli D.; Protti S.; Fagnoni M. Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chem. Rev. 2016, 116, 9850.10.1021/acs.chemrev.5b00662. - DOI - PubMed
    5. Lang X.; Zhao J.; Chen X. Cooperative Photoredox Catalysis. Chem. Soc. Rev. 2016, 45, 3026.10.1039/C5CS00659G. - DOI - PubMed
    6. Kärkäs M. D.; Porco J. A.; Stephenson C. R. J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 2016, 116, 9683.10.1021/acs.chemrev.5b00760. - DOI - PMC - PubMed
    7. Corrigan N.; Shanmugam S.; Xu J.; Boyer C. Photocatalysis in Organic and Polymer Synthesis. Chem. Soc. Rev. 2016, 45, 6165.10.1039/C6CS00185H. - DOI - PubMed
    8. Chen J.-R.; Hu X.-Q.; Lu L.-Q.; Xiao W.-J. Visible Light Photoredox-Controlled Reactions of N-Radicals and Radical Ions. Chem. Soc. Rev. 2016, 45, 2044.10.1039/C5CS00655D. - DOI - PubMed
    1. For selected examples using metal-based photocatalysts, see:

    2. Pirnot M. T.; Rankic D. A.; Martin D. B. C.; MacMillan D. W. C. Photoredox Activation for the Direct β-Arylation of Ketones and Aldehydes. Science 2013, 339, 1593.10.1126/science.1232993. - DOI - PMC - PubMed
    3. Zuo Z.; Ahneman D. T.; Chu L.; Terrett J. A.; Doyle A. G.; MacMillan D. W. C. Merging Photoredox with Nickel Catalysis: Coupling of α-Carboxyl sp3-Carbons with Aryl Halides. Science 2014, 345, 437.10.1126/science.1255525. - DOI - PMC - PubMed
    4. Du J.; Skubi K. L.; Schultz D. M.; Yoon T. P. A Dual-Catalysis Approach to Enantioselective [2 + 2] Photocycloadditions Using Visible Light. Science 2014, 344, 392.10.1126/science.1251511. - DOI - PMC - PubMed
    5. Dai C.; Narayanam J. M. R.; Stephenson C. R. J. Visible-Light-Mediated Conversion of Alcohols to Halides. Nat. Chem. 2011, 3, 140.10.1038/nchem.949. - DOI - PubMed
    6. Xuan J.; Zeng T.-T.; Feng Z.-J.; Deng Q.-H.; Chen J.-R.; Lu L.-Q.; Xiao W.-J.; Alper H. Redox-Neutral α-Allylation of Amines by Combining Palladium Catalysis and Visible-Light Photoredox Catalysis. Angew. Chem., Int. Ed. 2015, 54, 1625.10.1002/anie.201409999. - DOI - PubMed
    7. Huang H.; Jia K.; Chen Y. Hypervalent Iodine Reagents Enable Chemoselective Deboronative/Decarboxylative Alkenylation by Photoredox Catalysis. Angew. Chem., Int. Ed. 2015, 54, 1881.10.1002/anie.201410176. - DOI - PubMed
    8. Musacchio A. J.; Nguyen L. Q.; Beard G. H.; Knowles R. R. Catalytic Olefin Hydroamination with Aminium Radical Cations: A Photoredox Method for Direct C–N Bond Formation. J. Am. Chem. Soc. 2014, 136, 12217.10.1021/ja5056774. - DOI - PubMed
    9. Zoller J.; Fabry D. C.; Ronge M. A.; Rueping M. Synthesis of Indoles Using Visible Light: Photoredox Catalysis for Palladium-Catalyzed C–H Activation. Angew. Chem., Int. Ed. 2014, 53, 13264.10.1002/anie.201405478. - DOI - PubMed
    10. Tomita R.; Yasu Y.; Koike T.; Akita M. Combining Photoredox-Catalyzed Trifluoromethylation and Oxidation with DMSO: Facile Synthesis of α-Trifluoromethylated Ketones from Aromatic Alkenes. Angew. Chem., Int. Ed. 2014, 53, 7144.10.1002/anie.201403590. - DOI - PubMed
    1. For selected examples using organic dyes as the photocatalysts, see:

    2. Romero N. A.; Margrey K. A.; Tay N. E.; Nicewicz D. A. Site-Selective Arene C–H Amination via Photoredox Catalysis. Science 2015, 349, 1326.10.1126/science.aac9895. - DOI - PubMed
    3. Perkowski A. J.; Cruz C. L.; Nicewicz D. A. Ambient-Temperature Newman–Kwart Rearrangement Mediated by Organic Photoredox Catalysis. J. Am. Chem. Soc. 2015, 137, 15684.10.1021/jacs.5b11800. - DOI - PubMed
    4. Tröster A.; Alonso R.; Bauer A.; Bach T. Enantioselective Intermolecular [2 + 2] Photocycloaddition Reactions of 2(1H)-Quinolones Induced by Visible Light Irradiation. J. Am. Chem. Soc. 2016, 138, 7808.10.1021/jacs.6b03221. - DOI - PMC - PubMed
    5. Hari D. P.; Schroll P.; König B. Metal-Free, Visible-Light-Mediated Direct C–H Arylation of Heteroarenes with Aryl Diazonium Salts. J. Am. Chem. Soc. 2012, 134, 2958.10.1021/ja212099r. - DOI - PubMed
    6. Meng Q.-Y.; Zhong J.-J.; Liu Q.; Gao X.-W.; Zhang H.-H.; Lei T.; Li Z.-J.; Feng K.; Chen B.; Tung C.-H.; Wu L.-Z. A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis. J. Am. Chem. Soc. 2013, 135, 19052.10.1021/ja408486v. - DOI - PubMed
    7. Guo W.; Lu L.-Q.; Wang Y.; Wang Y.-N.; Chen J.-R.; Xiao W.-J. Metal-Free, Room-Temperature, Radical Alkoxycarbonylation of Aryldiazonium Salts through Visible-Light Photoredox Catalysis. Angew. Chem., Int. Ed. 2015, 54, 2265.10.1002/anie.201408837. - DOI - PubMed
    8. Xiao T.; Li L.; Lin G.; Wang Q.; Zhang P.; Mao Z.; Zhou L. Synthesis of 6-Substituted Phenanthridines by Metal-Free, Visible-Light Induced Aerobic Oxidative Cyclization of 2-Isocyanobiphenyls with Hydrazines. Green Chem. 2014, 16, 2418.10.1039/C3GC42517G. - DOI
    1. Fu M.-C.; Shang R.; Zhao B.; Wang B.; Fu Y. Photocatalytic Decarboxylative Alkylations Mediated by Triphenylphosphine and Sodium Iodide. Science 2019, 363, 1429.10.1126/science.aav3200. - DOI - PubMed
    2. Liu Q.; Liu F.; Yue H.; Zhao X.; Li J.; Wei W. Photocatalyst-Free Visible Light-Induced Synthesis of β-Oxo Sulfones via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Adv. Synth. Catal. 2019, 361, 5277.10.1002/adsc.201900984. - DOI
    3. Guillemard L.; Colobert F.; Wencel-Delord J. Visible-Light-Triggered, Metal- and Photocatalyst-Free Acylation of N-Heterocycles. Adv. Synth. Catal. 2018, 360, 4184.10.1002/adsc.201800692. - DOI