Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug;255(2 Pt 1):G253-9.
doi: 10.1152/ajpgi.1988.255.2.G253.

Na+-glycine cotransport in canalicular liver plasma membrane vesicles

Affiliations

Na+-glycine cotransport in canalicular liver plasma membrane vesicles

R H Moseley et al. Am J Physiol. 1988 Aug.

Abstract

By use of purified rat canalicular liver plasma membrane (cLPM) vesicles, the present study determined the driving forces for glycine transport across this membrane domain. Initial rates of [3H]glycine uptake (10 microM) in cLPM vesicles were stimulated by an inwardly directed Na+ gradient but not by a K+ gradient. Na+ gradient-dependent uptake of glycine demonstrated cation specificity for Na+, dependence on extravesicular Cl-, stimulation by an intravesicular-negative membrane potential, and inhibition by dissipation of the Na+ gradient with gramicidin D. Na+ gradient-dependent glycine cotransport also demonstrated greater sensitivity to inhibition by sarcosine than 2-(methylamino)-isobutyric acid. Accelerated exchange diffusion of [3H]glycine was demonstrated in the presence of Na+ when cLPM vesicles were preloaded with glycine but not with L-alanine or L-proline. Substrate velocity analysis of net Na+-dependent [3H]glycine uptake over the range of amino acid concentrations from 5 microM to 5 mM demonstrated two saturable transport systems, one of high capacity (2.2 +/- 0.2 nmol.mg protein-1.15 s-1) and low affinity (11.2 +/- 1.7 mM) and one of low capacity (51 +/- 14 pmol.mg protein.15 s-1) and comparatively high affinity (66 +/- 12 microM). These results indicate that, in addition to previously described neutral and anionic amino acid transport systems, Na+ gradient-dependent glycine transport mechanisms are present on the canalicular domain of the liver plasma membrane. These canalicular reabsorptive mechanisms may serve to reclaim some of the glycine generated within the canalicular lumen from the intrabiliary hydrolysis of glutathione.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources