A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach
- PMID: 34077865
- DOI: 10.1016/j.cmpb.2021.106190
A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is a global health issue. Traditionally, statistical models are used commonly in the risk prediction and assessment of CVD. However, the adoption of artificial intelligent (AI) approach is rapidly taking hold in the current era of technology to evaluate patient risks and predict the outcome of CVD. In this review, we outline various conventional risk scores and prediction models and do a comparison with the AI approach. The strengths and limitations of both conventional and AI approaches are discussed. Besides that, biomarker discovery related to CVD are also elucidated as the biomarkers can be used in the risk stratification as well as early detection of the disease. Moreover, problems and challenges involved in current CVD studies are explored. Lastly, future prospects of CVD risk prediction and assessment in the multi-modality of big data integrative approaches are proposed.
Keywords: Artificial intelligence; Cardiovascular diseases; Deep learning; Machine learning; Risk prediction.
Copyright © 2021. Published by Elsevier B.V.
Conflict of interest statement
Declaration of Competing Interest The authors declare there are no competing interests
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources