Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;22(1):26-31.
doi: 10.1016/j.clbc.2021.04.015. Epub 2021 May 5.

Deep Learning for the Detection of Breast Cancers on Chest Computed Tomography

Affiliations

Deep Learning for the Detection of Breast Cancers on Chest Computed Tomography

Jieun Koh et al. Clin Breast Cancer. 2022 Jan.

Abstract

Background: Incidental breast cancers can be detected on chest computed tomography (CT) scans. With the use of deep learning, the sensitivity of incidental breast cancer detection on chest CT would improve. This study aimed to evaluate the performance of a deep learning algorithm to detect breast cancers on chest CT and to validate the results in the internal and external datasets.

Patients and methods: This retrospective study collected 1170 preoperative chest CT scans after the diagnosis of breast cancer for algorithm development (n = 1070), internal test (n = 100), and external test (n = 100). A deep learning algorithm based on RetinaNet was developed and tested to detect breast cancer on chest CT.

Results: In the internal test set, the algorithm detected 96.5% of breast cancers with 13.5 false positives per case (FPs/case). In the external test set, the algorithm detected 96.1% of breast cancers with 15.6 FPs/case. When the candidate probability of 0.3 was used as the cutoff value, the sensitivities were 92.0% with 7.36 FPs/case for the internal test set and 93.0% with 8.85 FPs/case for the external test set. When the candidate probability of 0.4 was used as the cutoff value, the sensitivities were 88.5% with 5.24 FPs/case in the internal test set and 90.7% with 6.3 FPs/case in the external test set.

Conclusion: The deep learning algorithm could sensitively detect breast cancer on chest CT in both the internal and external test sets.

Keywords: Breast cancer; Breast nodule; Computed tomography; Deep learning; Diagnosis.

PubMed Disclaimer

MeSH terms