Solid-Phase Synthesis of Gly-Ψ[CH(CF3)NH]-Peptides
- PMID: 34081467
- PMCID: PMC8279481
- DOI: 10.1021/acs.joc.1c00853
Solid-Phase Synthesis of Gly-Ψ[CH(CF3)NH]-Peptides
Abstract
The solid-phase synthesis of Gly-Ψ[CH(CF3)NH]-peptides is presented. In order to achieve this goal, the synthesis of Gly-Ψ[CH(CF3)NH]-dipeptides having the C-terminus unprotected, the N-terminus protected as Fmoc- or Teoc-, and possibly side chain functionalities protected with acid-labile protecting groups has been developed. A selected small library of six peptidomimetics, encompassing analogues of biological relevant peptides, have been obtained in high purity.
Conflict of interest statement
The authors declare no competing financial interest.
Figures


References
-
- Loffet A. Peptides as Drugs: Is There a Market?. J. Pept. Sci. 2002, 8, 1–7. 10.1002/psc.366. - DOI - PubMed
- Kaspar A. A.; Reichert J. M. Future Directions for Peptide Therapeutics Development. Drug Discovery Today 2013, 18, 807–817. 10.1016/j.drudis.2013.05.011. - DOI - PubMed
- Fosgerau K.; Hoffmann T. Peptide Therapeutics: Current Status and Future Directions. Drug Discovery Today 2015, 20, 122–128. 10.1016/j.drudis.2014.10.003. - DOI - PubMed
- Lau J. L.; Dunn M. K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. 10.1016/j.bmc.2017.06.052. - DOI - PubMed
- Chia C. S. B. A Review on the Metabolism of 25 Peptide Drugs. Int. J. Pept. Res. Ther. 2021, 27, 1397–1418. 10.1007/s10989-021-10177-0. - DOI
-
- Pedersen D. S.; Abell A. 1,2,3-Triazoles in Peptidomimetic Chemistry. Eur. J. Org. Chem. 2011, 2011, 2399–2411. 10.1002/ejoc.201100157. - DOI
- Avan I.; Hall C. D.; Katritzky A. R. Peptidomimetics Via Modifications of Amino Acids and Peptide Bonds. Chem. Soc. Rev. 2014, 43, 3575–3594. 10.1039/c3cs60384a. - DOI - PubMed
- Boutureira O.; Bernardes G. J. Advances in Chemical Protein Modification. Chem. Rev. 2015, 115, 2174–2195. 10.1021/cr500399p. - DOI - PubMed
-
- Choudhary A.; Raines R. T. An Evaluation of Peptide-Bond Isosteres. ChemBioChem 2011, 12, 1801–1807. 10.1002/cbic.201100272. - DOI - PMC - PubMed
- McLaughlin M.; Yazaki R.; Fessard T. C.; Carreira E. M. Oxetanyl Peptides: Novel Peptidomimetic Modules for Medicinal Chemistry. Org. Lett. 2014, 16, 4070–4073. 10.1021/ol501590n. - DOI - PMC - PubMed
- Powell N. H.; Clarkson G. J.; Notman R.; Raubo P.; Martin N. G.; Shipman M. Synthesis and Structure of Oxetane Containing Tripeptide Motifs. Chem. Commun. 2014, 50, 8797–8800. 10.1039/C4CC03507K. - DOI - PubMed
- Drouin M.; Paquin J.-F. Recent Progress in the Racemic and Enantioselective Synthesis of Monofluoroalkene-Based Dipeptide Isosteres. Beilstein J. Org. Chem. 2017, 13, 2637–2658. 10.3762/bjoc.13.262. - DOI - PMC - PubMed
- Möller G. P.; Müller S.; Wolfstädter B. T.; Wolfrum S.; Schepmann D.; Wünsch B.; Carreira E. M. Oxetanyl Amino Acids for Peptidomimetics. Org. Lett. 2017, 19, 2510–2513. 10.1021/acs.orglett.7b00745. - DOI - PubMed
- Wołczański G.; Lisowski M. A General Method for Preparation of N-Boc-Protected or N-Fmoc-Protected α,β-Didehydropeptide Building Blocks and Their Use in the Solid-Phase Peptide Synthesis. J. Pept. Sci. 2018, 24, e3091.10.1002/psc.3091. - DOI - PubMed
- Marafon G.; Moretto A.; Zanuy D.; Aleman C.; Crisma M.; Toniolo C. Effect on the Conformation of a Terminally Blocked, (E) β,γ-Unsaturated δ-Amino Acid Residue Induced by Carbon Methylation. J. Org. Chem. 2020, 85, 1513–1524. 10.1021/acs.joc.9b02544. - DOI - PubMed
-
- Tornøe C. W.; Christensen C.; Meldal M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. 10.1021/jo011148j. - DOI - PubMed
- Nadon J.-F.; Rochon C.; Grastilleur S.; Langlois G.; Dao T. T. H.; Blais V.; Guerin B.; Gendron L.; Dory Y. L. Synthesis of Gly-ψ[(Z)CF=CH]-Phe, a Fluoroalkene Dipeptide Isostere, and Its Incorporation into a Leu-enkephalin Peptidomimetic. ACS Chem. Neurosci. 2017, 8, 40–48. 10.1021/acschemneuro.6b00163. - DOI - PubMed
- Beadle J. D.; Knuhtsen A.; Hoose A.; Raubo P.; Jamieson A. G.; Shipman M. Solid-Phase Synthesis of Oxetane Modified Peptides. Org. Lett. 2017, 19, 3303–3306. 10.1021/acs.orglett.7b01466. - DOI - PubMed
- Engel-Andreasen J.; Wellhöfer I.; Wich K.; Olsen C. A. Backbone-Fluorinated 1,2,3-Triazole-Containing Dipeptide Surrogates. J. Org. Chem. 2017, 82, 11613–11619. 10.1021/acs.joc.7b01744. - DOI - PubMed
- Yang J.; Wang C.; Yao C.; Chen C.; Hu Y.; He G.; Zhao J. Site-Specific Incorporation of Multiple Thioamide Substitutions into a Peptide Backbone via Solid Phase Peptide Synthesis. J. Org. Chem. 2020, 85, 1484–1494. 10.1021/acs.joc.9b02486. - DOI - PubMed
- Melton S. D.; Smith M. S.; Chenoweth D. M. Incorporation of Aza-Glycine into Collagen Peptides. J. Org. Chem. 2020, 85, 1706–1711. 10.1021/acs.joc.9b02539. - DOI - PubMed
-
- Volonterio A.; Bellosta S.; Bravin F.; Bellucci M. C.; Bruché L.; Colombo G.; Malpezzi L.; Mazzini S.; Meille S. V.; Meli M.; Ramirez de Arellano C.; Zanda M. Synthesis, Structure and Conformation of Partially-Modified Retro- and Retro-Inverso Ψ [NHCH(CF3)]Gly Peptides. Chem. - Eur. J. 2003, 9, 4510–4522. 10.1002/chem.200304881. - DOI - PubMed
- Molteni M.; Volonterio A.; Zanda M. Stereocontrolled Synthesis of Ψ [CH(CF3)NH]Gly-Peptides. Org. Lett. 2003, 5, 3887–3890. 10.1021/ol0354730. - DOI - PubMed
- Molteni M.; Bellucci M. C.; Bigotti S.; Mazzini S.; Volonterio A.; Zanda M. Ψ[CH(CF3)NH]Gly-Peptides: Synthesis and Conformation Analysis. Org. Biomol. Chem. 2009, 7, 2286–2296. 10.1039/b901718f. - DOI - PubMed
- Sani M.; Volonterio A.; Zanda M. The Trifluoroethylamine Function as Peptide Bond Replacement. ChemMedChem 2007, 2, 1693–1700. 10.1002/cmdc.200700156. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources