Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 1;17(5):793-808.
doi: 10.1166/jbn.2021.3074.

Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment

Affiliations
Review

Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment

Oluwafemi Obisesan et al. J Biomed Nanotechnol. .

Abstract

Human Immunodeficiency Virus (HIV) is a global pandemic that has contributed to the burden of disease, and the synergistic interaction between Herpes Simplex Virus (HSV) and HIV has assisted further in the spread of the HIV disease. Moreover, several chemotherapeutic treatment options from antiviral monotherapy to highly active antiretroviral therapy (HAART) have been adopted to manage the infection; however, HIV has developed new mechanisms against these active pharmaceutical agents (APAs), limiting the effect of the drugs. In this article, we reviewed different nanoparticles and their antiviral potency against HSV and HIV infection as well as the effect of drug encapsulated nanoparticles using different drug delivery systems as they palliate to some flaws or deficiencies that the stand-alone drugs present. Drug encapsulated nanoparticles show better treatment outcomes of HSV and HIV infection. The nanoparticles can transverse the anatomic privilege sites to exert their therapeutic effect, and a prolonged and higher dose of the encapsulated therapeutic agent can ease the dosage frequency, thus palliating low drug compliance which the stand-alone drugs fail to perform. Therefore, it is clear that nanoparticles prevent antiviral drug resistance by maintaining sustained drug release over an extended period, improving the therapeutic effect of the entrapped drug

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources