Evolution of Castration-Resistant Prostate Cancer in ctDNA during Sequential Androgen Receptor Pathway Inhibition
- PMID: 34083234
- DOI: 10.1158/1078-0432.CCR-21-1625
Evolution of Castration-Resistant Prostate Cancer in ctDNA during Sequential Androgen Receptor Pathway Inhibition
Abstract
Purpose: Cross-resistance renders multiple lines of androgen receptor (AR) signaling inhibitors increasingly futile in metastatic castration-resistant prostate cancer (mCRPC). We sought to determine acquired genomic contributors to cross-resistance.
Experimental design: We collected 458 serial plasma cell-free DNA samples at baseline and progression timepoints from 202 patients with mCRPC receiving sequential AR signaling inhibitors (abiraterone and enzalutamide) in a randomized phase II clinical trial (NCT02125357). We utilized deep targeted and whole-exome sequencing to compare baseline and posttreatment somatic genomic profiles in circulating tumor DNA (ctDNA).
Results: Patient ctDNA abundance was correlated across plasma collections and independently prognostic for sequential therapy response and overall survival. Most driver alterations in established prostate cancer genes were consistently detected in ctDNA over time. However, shifts in somatic populations after treatment were identified in 53% of patients, particularly after strong treatment responses. Treatment-associated changes converged upon the AR gene, with an average 50% increase in AR copy number, changes in AR mutation frequencies, and a 2.5-fold increase in the proportion of patients carrying AR ligand binding domain truncating rearrangements.
Conclusions: Our data show that the dominant AR genotype continues to evolve during sequential lines of AR inhibition and drives acquired resistance in patients with mCRPC.
©2021 American Association for Cancer Research.
References
-
- Attard G, Parker C, Eeles RA, Schröder F, Tomlins SA, Tannock I, et al. Prostate cancer. Lancet. 2016;387:70–82.
-
- Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A. 2019;116:11428–36.
-
- Henzler C, Li Y, Yang R, McBride T, Ho Y, Sprenger C, et al. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat Commun. 2016;7:13668.
-
- Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;175:889.
-
- Sartor O, de Bono JS. Metastatic prostate cancer. N Engl J Med. 2018;378:645–57.
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
