Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 18:12:680021.
doi: 10.3389/fphar.2021.680021. eCollection 2021.

Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments

Affiliations
Review

Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments

Mahmoud S Alghamri et al. Front Pharmacol. .

Abstract

Gliomas are one of the most lethal types of cancers accounting for ∼80% of all central nervous system (CNS) primary malignancies. Among gliomas, glioblastomas (GBM) are the most aggressive, characterized by a median patient survival of fewer than 15 months. Recent molecular characterization studies uncovered the genetic signatures and methylation status of gliomas and correlate these with clinical prognosis. The most relevant molecular characteristics for the new glioma classification are IDH mutation, chromosome 1p/19q deletion, histone mutations, and other genetic parameters such as ATRX loss, TP53, and TERT mutations, as well as DNA methylation levels. Similar to other solid tumors, glioma progression is impacted by the complex interactions between the tumor cells and immune cells within the tumor microenvironment. The immune system's response to cancer can impact the glioma's survival, proliferation, and invasiveness. Salient characteristics of gliomas include enhanced vascularization, stimulation of a hypoxic tumor microenvironment, increased oxidative stress, and an immune suppressive milieu. These processes promote the neuro-inflammatory tumor microenvironment which can lead to the loss of blood-brain barrier (BBB) integrity. The consequences of a compromised BBB are deleteriously exposing the brain to potentially harmful concentrations of substances from the peripheral circulation, adversely affecting neuronal signaling, and abnormal immune cell infiltration; all of which can lead to disruption of brain homeostasis. In this review, we first describe the unique features of inflammation in CNS tumors. We then discuss the mechanisms of tumor-initiating neuro-inflammatory microenvironment and its impact on tumor invasion and progression. Finally, we also discuss potential pharmacological interventions that can be used to target neuro-inflammation in gliomas.

Keywords: glioma; immunosuppression; immunotherapy; inflammation; tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Schematic of the BBB under (A) homeostasis and (B) glioma-associated inflammation. In inflamed conditions (B), junctions between endothelial cells break apart, pericytes are disrupted, and astrocytic endfeet detach from the basement membrane. Glioma cells, macrophages and microglia, astrocytes, and MDSCs release cytokines and other factors that contribute to BBB breakdown and create an inflammatory tumor microenvironment.
FIGURE 2
FIGURE 2
Depiction of the immunosuppressive environment in glioblastoma and current therapeutic approaches (red) to stimulate anti-tumor responses or inhibit suppressive immune cell populations. Glioma cells release chemoattractants and cytokines that recruit immune cells into the tumor microenvironment (TME). These factors elicit pro-tumor activities that inhibit effector T cells (Teff) and contribute to tumor progression. Glioma cells can also directly interact with immune cells and astrocytes impacting the effectiveness of chemotherapy. Inhibition of Stat3 by WP1066 reduces glioma-associated macrophages (GAM) by blocking intracellular signals induced by IL-10 to promote an anti-tumor macrophage (M1-like MΦ) phenotype. The CXCR4 antagonist AMD3100 prevents the binding of stromal cell-derived factor (SDF-1), resulting in decreased tumor proliferation and blocks the migration of myeloid-derived suppressor cells (MDSCs) in the TME. The CSF1R inhibitors (PLX3397, BLZ945) suppress the infiltration of myeloid cells (macrophages and MDSCs) within the TME. MDSCs synthesize prostaglandin E2 (PGE2) via COX-2 which inhibits effector T cells by reducing Interferon-gamma (IFN-γ) release. The COX-2 inhibitor, celecoxib reduces MDSC immunosuppressive activity. Interleukin-12 (IL-12) is secreted by antigen-presenting cells (APC) like dendritic cells and macrophages, exogenous IL-12 therapy triggers a pro-inflammatory transition of naïve T cells (ThO) to type 1 helper T cells (Th1) leading to an increase in IFN-y and tumor necrosis factor (TNF-α) secretion. Tumor cells express high levels of programmed cell death ligand (PD-L1) on their cell surface, which leads to exhausted T cells (Tex) by immune checkpoint signaling through their receptor programmed cell death protein 1 (PD-1). Inhibition of PD-1 with nivolumab reduces T cell exhaustion.

Similar articles

  • Clinical insights gained by refining the 2016 WHO classification of diffuse gliomas with: EGFR amplification, TERT mutations, PTEN deletion and MGMT methylation.
    Brito C, Azevedo A, Esteves S, Marques AR, Martins C, Costa I, Mafra M, Bravo Marques JM, Roque L, Pojo M. Brito C, et al. BMC Cancer. 2019 Oct 17;19(1):968. doi: 10.1186/s12885-019-6177-0. BMC Cancer. 2019. PMID: 31623593 Free PMC article.
  • DNA methylation signatures for 2016 WHO classification subtypes of diffuse gliomas.
    Paul Y, Mondal B, Patil V, Somasundaram K. Paul Y, et al. Clin Epigenetics. 2017 Apr 4;9:32. doi: 10.1186/s13148-017-0331-9. eCollection 2017. Clin Epigenetics. 2017. PMID: 28392842 Free PMC article.
  • Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.
    Cancer Genome Atlas Research Network; Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloan JS, Berger MS, Brennan C, Colen RR, Colman H, Flanders AE, Giannini C, Grifford M, Iavarone A, Jain R, Joseph I, Kim J, Kasaian K, Mikkelsen T, Murray BA, O'Neill BP, Pachter L, Parsons DW, Sougnez C, Sulman EP, Vandenberg SR, Van Meir EG, von Deimling A, Zhang H, Crain D, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton T, Sherman M, Yena P, Black A, Bowen J, Dicostanzo K, Gastier-Foster J, Leraas KM, Lichtenberg TM, Pierson CR, Ramirez NC, Taylor C, Weaver S, Wise L, Zmuda E, Davidsen T, Demchok JA, Eley G, Ferguson ML, Hutter CM, Mills Shaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Ayala B, Baboud J, Chudamani S, Jensen MA, Liu J, Pihl T, Raman R, Wan Y, Wu Y, Ally A, Auman JT, Balasundaram M, Balu S, Baylin SB, Beroukhim R, Bootwalla MS, Bowlby R, Bristow CA, Brooks D, Butterfield Y, Carlsen R, Carter S, Chin L, Chu A, Chuah E, Cibulskis K, Clarke A, Coetzee SG, Dhalla N, Fenn… See abstract for full author list ➔ Cancer Genome Atlas Research Network, et al. N Engl J Med. 2015 Jun 25;372(26):2481-98. doi: 10.1056/NEJMoa1402121. Epub 2015 Jun 10. N Engl J Med. 2015. PMID: 26061751 Free PMC article.
  • Clinical impact of revisions to the WHO classification of diffuse gliomas and associated future problems.
    Sonoda Y. Sonoda Y. Int J Clin Oncol. 2020 Jun;25(6):1004-1009. doi: 10.1007/s10147-020-01628-7. Epub 2020 Feb 4. Int J Clin Oncol. 2020. PMID: 32020379 Review.
  • Molecular Classification of Diffuse Gliomas.
    Kalidindi N, Or R, Babak S, Mason W. Kalidindi N, et al. Can J Neurol Sci. 2020 Jul;47(4):464-473. doi: 10.1017/cjn.2020.10. Epub 2020 Jan 10. Can J Neurol Sci. 2020. PMID: 31918786 Review.

Cited by

References

    1. Abbott N. J., Rönnbäck L., Hansson E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53. 10.1038/nrn1824 - DOI - PubMed
    1. Adler I. (2010). Alexion Reports Results from First Clinical Trial of Novel Anti-Cancer Antibody Samalizumab at ASH Annual Meeting. http://news.alexionpharma.com/press-release/product-news/alexion-reports....
    1. Ahmed N., Brawley V., Hegde M., Bielamowicz K., Kalra M., Landi D., et al. (2017). HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma. JAMA Oncol. 3, 1094–1101. 10.1001/jamaoncol.2017.0184 - DOI - PMC - PubMed
    1. Akasaki Y., Liu G., Chung N. H. C., Ehtesham M., Black K. L., Yu J. S. (2004). Induction of a CD4+ T regulatory type 1 response by cyclooxygenase-2-overexpressing glioma. J. Immunol. 173, 4352–4359. 10.4049/jimmunol.173.7.4352 - DOI - PubMed
    1. Akasaki Y., Kikuchi T., Homma S., Koido S., Ohkusa T., Tasaki T., et al. (2016). Phase I/II trial of combination of temozolomide chemotherapy and immunotherapy with fusions of dendritic and glioma cells in patients with glioblastoma. Cancer Immunol. Immunother. 65, 1499–1509. 10.1007/s00262-016-1905-7 - DOI - PMC - PubMed