Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 4;11(10):2790-2795.
doi: 10.1039/c9sc06197e.

Tripyrrin-armed isosmaragdyrins: synthesis, heterodinuclear coordination, and protonation-triggered helical inversion

Affiliations

Tripyrrin-armed isosmaragdyrins: synthesis, heterodinuclear coordination, and protonation-triggered helical inversion

Chengjie Li et al. Chem Sci. .

Abstract

Oxidative ring closure of linear oligopyrroles is one of the synthetic approaches to novel porphyrinoids with dinuclear coordination sites and helical chirality. The spatial arrangement of the pyrrolic groups of octapyrrole (P8) affected the position of the intramolecular oxidative coupling of the pyrrolic units; tripyrrin-armed isosmaragdyrin analogue (1) containing a β,β-linked bipyrrole moiety was synthesized regioselectively in a high yield by using FeCl3. NiII-coordination at the armed tripyrrin site of 1 allowed the formation of diastereomeric helical twisted complexes (2A and 2B) and succeeding CuII-coordination at the macrocyclic core afforded heterodinuclear NiII/CuII-complexes (3A and 3B). Each of them comprised a pair of separable enantiomers, exhibiting P- and M-helices, respectively. Notably, diastereomeric interconversion from 2A to 2B was quantitatively achieved as a consequence of helical transformation under acidic conditions.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (a) Typical synthetic approaches for constructing bipyrrole-containing porphyrinoids linked in different modes through oxidative coupling of oligopyrroles. (b) Representative macrocyclic compounds containing β,β′-linked (red) bipyrrole moieties. (c) The oxidative coupling reaction of a helical oligopyrrole, P8, where the appropriate pyrrole rings are present spatially in close proximity, giving a new isosmaragdyrin analogue 1. Meso-aryl rings are omitted for clarity.
Scheme 1
Scheme 1. Stepwise syntheses of pentaphyrin 1 and metal complexes 2 and 3. The labels, A–H, are defined to identify each pyrrole ring. Conditions: (i) FeCl3, CH2Cl2/MeOH (1 : 50), 88%; (ii) Ni(OAc)2·4H2O, CH2Cl2/MeOH, 63% for 2A, 19% for 2B; (iii) Cu(OAc)2·H2O, MeOH, 81%; (iv) Cu(OAc)2·H2O, MeOH, 91%; (v) TFA, CH2Cl2.
Fig. 2
Fig. 2. Molecular structures of 2A (a and b), 2B (c and d), 3A (e and f), and 3B (g and h). (a) and (b) A pair of enantiomers in the racemic crystals of 2A, specifically M,R-2 for (a) and P,S-2 for (b). Similarly, P,R-2 for (c), M,S-2 for (d), M,R-3 for (e), P,S-3 for (f), P,R-3 for (g), and M,S-3 for (h). C6F5 groups and the hydrogen atoms attached to carbon atoms are omitted for clarity.
Fig. 3
Fig. 3. CD spectra of the complexes in CH2Cl2 in the absence (black line) and presence (red line) of TFA, (a) M,R-2, (b) P,R-2, (c) P,S-2, and (d) M,S-2.
Fig. 4
Fig. 4. Relative energies between two conformers of (a) 2A and 2B, (b) 3A and 3B, (c) 2AH and 2BH, and (d) 3AH and 3BH. The energies of P,S-2, P,S-2H, P,S-3, and P,S-3H (corresponding to 2A, 2AH, 3A, and 3AH) were calculated relative to those of M,S-2, M,S-2H, M,S-3, and M,S-3H (corresponding to 2B, 2BH, 3B, and 3BH), respectively.

References

    1. Saito S. Osuka A. Angew. Chem., Int. Ed. 2011;50:4342–4373. doi: 10.1002/anie.201003909. - DOI - PubMed
    2. Stępień M. Sprutta N. Latos-Grażyński L. Angew. Chem., Int. Ed. 2011;50:4288–4340. doi: 10.1002/anie.201003353. - DOI - PubMed
    3. Roznyatovskiy V. V. Lee C. H. Sessler J. L. Chem. Soc. Rev. 2013;42:1921–1933. doi: 10.1039/C2CS35418G. - DOI - PubMed
    4. Ke X. S. Zhao H. M. Zou X. R. Ning Y. Y. Cheng X. Su H. M. Zhang J. L. J. Am. Chem. Soc. 2015;137:10745–10752. doi: 10.1021/jacs.5b06332. - DOI - PubMed
    5. Lu Y. Y. Cheng Y. C. Li C. J. Luo J. X. Tang W. Q. Zhao S. L. Liu Q. Y. Xie Y. S. Sci. China: Chem. 2019;62:994–1000. doi: 10.1007/s11426-019-9471-y. - DOI
    1. Lash T. D. Angew. Chem., Int. Ed. 2000;39:1763–1767. doi: 10.1002/(SICI)1521-3773(20000515)39:10<1763::AID-ANIE1763>3.0.CO;2-3. - DOI - PubMed
    2. Miao W. Zhu Z. Y. Li Z. X. Hao E. Jiao L. J. Chin. Chem. Lett. 2019;30:1895–1902. doi: 10.1016/j.cclet.2019.08.016. - DOI
    3. Chandrashekar T. K. Venkatraman S. Acc. Chem. Res. 2003;36:676–691. doi: 10.1021/ar020284n. - DOI - PubMed
    4. Ghosh A. Angew. Chem., Int. Ed. 2004;43:1918–1931. doi: 10.1002/anie.200201603. - DOI - PubMed
    5. Shin J. Y. Kim K. S. Yoon M. C. Lim J. M. Yoon Z. S. Osuka A. Kim D. Chem. Soc. Rev. 2010;39:2751–2767. doi: 10.1039/B925417J. - DOI - PubMed
    6. Li Q. Z. Li C. J. Kim J. Ishida M. Li X. Gu T. T. Liang X. Zhu W. H. Ågren H. Kim D. Furuta H. Xie Y. S. J. Am. Chem. Soc. 2019;141:5294–5302. doi: 10.1021/jacs.8b13148. - DOI - PubMed
    1. Vargas-Zúñiga G. I. Sessler J. L. Adv. Inorg. Chem. 2018;71:327–377. doi: 10.1016/bs.adioch.2017.11.003. - DOI
    2. Lintuluoto J. M. Nakayama K. Setsune J. Chem. Commun. 2006:3492–3494. doi: 10.1039/B606228H. - DOI - PubMed
    3. Ruffin H. Boussambe G. N. M. B. Roisnel T. Boitrel V. D. B. Le Gac S. J. Am. Chem. Soc. 2017;139:13847–13857. doi: 10.1021/jacs.7b07559. - DOI - PubMed
    1. Feringa B. L. Angew. Chem., Int. Ed. 2017;56:11060–11078. doi: 10.1002/anie.201702979. - DOI - PubMed
    1. Mitsuno K. Yoshino T. Gupta I. Mori S. Karasawa S. Ishida M. Furuta H. Angew. Chem., Int. Ed. 2017;56:14252–14256. doi: 10.1002/anie.201708253. - DOI - PubMed
    2. Mysliborski R. Hurej K. Pawlicki M. Latos-Grażyński L. Angew. Chem., Int. Ed. 2018;57:16866–16870. doi: 10.1002/anie.201811138. - DOI - PubMed
    3. Soya T. Mori H. Osuka A. Angew. Chem., Int. Ed. 2018;57:15882–15886. doi: 10.1002/anie.201811433. - DOI - PubMed
    4. Ke X. S. Kim T. He Q. Lynch V. M. Kim D. Sessler J. L. J. Am. Chem. Soc. 2018;140:16455–16459. doi: 10.1021/jacs.8b11158. - DOI - PubMed
    5. Xie D. G. Liu Y. Rao Y. T. Kim G. Zhou M. B. Yu D. H. Xu L. Yin B. S. Liu S. B. Tanaka T. Aratani N. Osuka A. Liu Q. Y. Kim D. Song J. X. J. Am. Chem. Soc. 2018;140:16553–16559. doi: 10.1021/jacs.8b07973. - DOI - PubMed
    6. Maurya Y. K. Noda K. Yamasumi K. Mori S. Uchiyama T. Kamitani K. Hirai T. Ninomiya K. Nishibori M. Hori Y. Shiota Y. Yoshizawa K. Ishida M. Furuta H. J. Am. Chem. Soc. 2018;140:6883–6892. doi: 10.1021/jacs.8b01876. - DOI - PubMed
    7. Li Q. Z. Ishida M. Kai H. Gu T. T. Li C. J. Li X. Baryshnikov G. Liang X. Zhu W. H. Ågren H. Furuta H. Xie Y. S. Angew. Chem., Int. Ed. 2019;58:5925–5929. doi: 10.1002/anie.201900010. - DOI - PubMed