NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors
- PMID: 34085273
- DOI: 10.1007/978-1-0716-1221-7_16
NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors
Abstract
Cytosolic β-arrestins are key regulators of G protein-coupled receptors (GPCRs) by sterically uncoupling G protein activation, facilitating receptor internalization, and/or acting as G protein-independent signaling scaffolds. The current awareness that GPCR ligands may display bias toward G protein signaling or β-arrestin recruitment makes β-arrestin recruitment assays important additions to the drug discovery toolbox. This chapter describes two NanoLuc-based methods to monitor β-arrestin2 recruitment to the human histamine H1 receptor by measuring bioluminescence resonance energy transfer and enzyme-fragment complementation in real-time on living cells with reasonable high throughput. In addition to the detection of agonism, both assay formats can be used to qualitatively evaluate the binding kinetics of antihistamines on the human histamine H1 receptor.
Keywords: Bioluminescence resonance energy transfer (BRET); Enzyme-fragment complementation (EFC); GPCR; Luciferase; Protein-protein interaction (PPI); β-Arrestin.
Similar articles
-
BRET-based β-arrestin2 recruitment to the histamine H1 receptor for investigating antihistamine binding kinetics.Pharmacol Res. 2016 Sep;111:679-687. doi: 10.1016/j.phrs.2016.07.034. Epub 2016 Jul 26. Pharmacol Res. 2016. PMID: 27468652
-
A novel luminescence-based β-arrestin recruitment assay for unmodified receptors.J Biol Chem. 2021 Jan-Jun;296:100503. doi: 10.1016/j.jbc.2021.100503. Epub 2021 Mar 5. J Biol Chem. 2021. PMID: 33684444 Free PMC article.
-
Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.Methods Mol Biol. 2021;2201:45-58. doi: 10.1007/978-1-0716-0884-5_5. Methods Mol Biol. 2021. PMID: 32975788
-
Bioluminescence Resonance Energy Transfer as a Method to Study Protein-Protein Interactions: Application to G Protein Coupled Receptor Biology.Molecules. 2019 Feb 1;24(3):537. doi: 10.3390/molecules24030537. Molecules. 2019. PMID: 30717191 Free PMC article. Review.
-
NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs.Trends Pharmacol Sci. 2018 Feb;39(2):136-147. doi: 10.1016/j.tips.2017.10.006. Epub 2017 Nov 10. Trends Pharmacol Sci. 2018. PMID: 29132917 Review.
Cited by
-
Functionality of Melatonin Receptors: Internalization.Methods Mol Biol. 2022;2550:189-193. doi: 10.1007/978-1-0716-2593-4_23. Methods Mol Biol. 2022. PMID: 36180692
-
BRET-Based Biosensors to Measure Agonist Efficacies in Histamine H1 Receptor-Mediated G Protein Activation, Signaling and Interactions with GRKs and β-Arrestins.Int J Mol Sci. 2022 Mar 16;23(6):3184. doi: 10.3390/ijms23063184. Int J Mol Sci. 2022. PMID: 35328605 Free PMC article.
-
Identification of TSPAN4 as Novel Histamine H4 Receptor Interactor.Biomolecules. 2021 Jul 30;11(8):1127. doi: 10.3390/biom11081127. Biomolecules. 2021. PMID: 34439793 Free PMC article.
-
Multiplex Detection of Fluorescent Chemokine Binding to CXC Chemokine Receptors by NanoBRET.Int J Mol Sci. 2024 May 4;25(9):5018. doi: 10.3390/ijms25095018. Int J Mol Sci. 2024. PMID: 38732237 Free PMC article.
-
Optical control of the β2-adrenergic receptor with opto-prop-2: A cis-active azobenzene analog of propranolol.iScience. 2022 Aug 5;25(9):104882. doi: 10.1016/j.isci.2022.104882. eCollection 2022 Sep 16. iScience. 2022. PMID: 36060054 Free PMC article.
References
-
- Insel PA, Sriram K, Gorr MW et al (2019) GPCRomics: an approach to discover GPCR drug targets. Trends Pharmacol Sci 40:378–387. https://doi.org/10.1016/j.tips.2019.04.001 - DOI - PubMed - PMC
-
- Hauser AS, Attwood MM, Rask-Andersen M et al (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842. https://doi.org/10.1038/nrd.2017.178 - DOI - PubMed - PMC
-
- Gurevich VV, Gurevich EV (2019) GPCR signaling regulation: the role of GRKs and arrestins. Front Pharmacol 10:125. https://doi.org/10.3389/fphar.2019.00125 - DOI - PubMed - PMC
-
- Peterson YK, Luttrell LM (2017) The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev 69:256–297. https://doi.org/10.1124/pr.116.013367 - DOI - PubMed - PMC
-
- Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17:243–260. https://doi.org/10.1038/nrd.2017.229 - DOI - PubMed - PMC
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources