Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct:151:116021.
doi: 10.1016/j.bone.2021.116021. Epub 2021 Jun 2.

Microgravity-induced alterations of mouse bones are compartment- and site-specific and vary with age

Affiliations

Microgravity-induced alterations of mouse bones are compartment- and site-specific and vary with age

Jennifer C Coulombe et al. Bone. 2021 Oct.

Abstract

The age at which astronauts experience microgravity is a critical consideration for skeletal health and similarly has clinical relevance for musculoskeletal disuse on Earth. While astronauts are extensively studied for bone and other physiological changes, rodent studies enable direct evaluation of skeletal changes with microgravity. Yet, mouse spaceflight studies have predominately evaluated tissues from young, growing mice. We evaluated bone microarchitecture in tibiae and femurs from Young (9-week-old) and Mature (32-weeks-old) female, C57BL/6N mice flown in microgravity for ~2 and ~3 weeks, respectively. Microgravity-induced changes were both compartment- and site-specific. Changes were greater in trabecular versus cortical bone in Mature mice exposed to microgravity (-40.0% Tb. BV/TV vs -4.4% Ct. BV/TV), and bone loss was greater in the proximal tibia as compared to the distal femur. Trabecular thickness in Young mice increased by +25.0% on Earth and no significant difference following microgravity. In Mature mice exposed to microgravity, trabecular thickness rapidly decreased (-24.5%) while no change was detected in age-matched mice that were maintained on Earth. Mature mice exposed to microgravity experienced greater bone loss than Young mice with net skeletal growth. Moreover, machine learning classification models confirmed that microgravity exposure-driven decrements in trabecular microarchitecture and cortical structure occurred disproportionately in Mature than in Young mice. Our results suggest that age of disuse onset may have clinical implications in osteoporotic or other at-risk populations on Earth and may contribute to understanding bone loss patterns in astronauts.

Keywords: Aging; Disuse; MicroCT; Microgravity; Mouse models; Spaceflight.

PubMed Disclaimer

Publication types

LinkOut - more resources