Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr;20(2):327-351.
doi: 10.1007/s12021-021-09521-y. Epub 2021 Jun 4.

DTI Atlases Evaluations

Affiliations

DTI Atlases Evaluations

Yi Wang et al. Neuroinformatics. 2022 Apr.

Abstract

The cerebral atlas of diffusion tensor magnetic resonance image (DT-MRI, shorted as DTI) is one of the key issues in neuroimaging research. It is crucial for comparisons of neuronal structural integrity and connectivity across populations. Usually, the atlas is constructed by iteratively averaging the registered individual image. In tradition, the fuzzy group average image is easily generated in the initial stage, which is harmful to providing clear guidance for subsequent registration, to the performance of the final atlas. To solve this problem, an improved unbiased DTI atlas construction algorithm based on adaptive weights is proposed in this paper. The adaptive weighted strategy based on diffeomorphic deformable tensor registration is introduced. At the same time, the distance measure for tensors is used as a constraint condition, which ensures the unbiasedness of the atlas. Then, using 77 DTIs from the dataset in http://www.brain-development.org , three study-specific atlases, i.e. the constructed atlases of the proposed algorithm and two open-sourced algorithms (DTIAtlasBuilder and DTI-TK), are compared with two standardized atlases (IIT v. 4.1 and NTU-DSI-122-DTI). The performances of the atlases were evaluated in spatial normalization way with six region-based criteria (including Euclidean distances between diffusion tensors, Euclidean distances of the deviatoric tensors, standard deviation, overlaps of eigenvalue-eigenvector, cross-correlations and three sets angles of eigenvalue-eigenvector pairs between diffusion tensors) and three fiber-based criteria (including distances between fiber bundles, angles between fiber bundles and fiber property profile-based criteria). The experimental results showed that the overall performances of the study-specific atlases are better than those of the standardized atlases for specific datasets, and the comprehensive performance of the improved algorithm proposed in this paper is the best.

Keywords: Atlas; Diffusion tensor magnetic resonance images; Evaluation criteria; Spatial normalization.

PubMed Disclaimer

References

    1. Adluru, N., Zhang, H., Fox, A. S., Shelton, S. E., Ennis, C. M., Bartosic, A. M., Oler, J. A., Tromp, D. P. M., Zakszewski, E., Gee, J. C., Kalin, N. H., & Alexander, A. L. (2012). A diffusion tensor brain template for rhesus macaques. NeuroImage, 59, 306–318.
    1. Fréchet, M. (1948). Les éléments Aléatoires de Nature Quelconque dans une Espace Distancié. Ann Inst H Poincaré, 10, 215–310.
    1. Hsu, Y.-C., Lo, Y.-C., Chen, Y.-J., Wedeen, V., & Tseng, W.-Y. (2015). NTU-DSI-122: A diffusion spectrum imaging template with high anatomical matching to the ICBM-152 space. Hum Brain Mapp, 36, 3528–3541. - DOI
    1. Irfanoglu, M. O., Nayak, A., Jenkins, J., Hutchinson, E. B., Sadeghi, N., Thomas, C. P., & Pierpaoli, C. (2016). DR-TAMAS: Diffeomorphic registration for tensor accurate alignment of anatomical structures. NeuroImage, 132, 439–454. - DOI
    1. Jiang, H., Van Zijl, P., Kim, J., Pearlson, G. D., & Mori, S. (2006). DTIStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Prog Biomed, 81, 106–116. - DOI

Publication types

MeSH terms

LinkOut - more resources