Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Aug:275:120901.
doi: 10.1016/j.biomaterials.2021.120901. Epub 2021 May 19.

Musculoskeletal tissue engineering: Regional gene therapy for bone repair

Affiliations
Review

Musculoskeletal tissue engineering: Regional gene therapy for bone repair

Kevin Collon et al. Biomaterials. 2021 Aug.

Abstract

Bone loss associated with fracture nonunion, revision total joint arthroplasty (TJA), and pseudoarthrosis of the spine presents a challenging clinical scenario for the orthopaedic surgeon. Current treatment options including autograft, allograft, bone graft substitutes, and bone transport techniques are associated with significant morbidity, high costs, and prolonged treatment regimens. Unfortunately, these treatment strategies have proven insufficient to safely and consistently heal bone defects in the stringent biological environments often encountered in clinical cases of bone loss. The application of tissue engineering (TE) to musculoskeletal pathology has uncovered exciting potential treatment strategies for challenging bone loss scenarios in orthopaedic surgery. Regional gene therapy involves the local implantation of nucleic acids or genetically modified cells to direct specific protein expression, and has shown promise as a potential TE technique for the regeneration of bone. Preclinical studies in animal models have demonstrated the ability of regional gene therapy to safely and effectively heal critical sized bone defects which otherwise do not heal. The purpose of the present review is to provide a comprehensive overview of the current status of gene therapy applications for TE in challenging bone loss scenarios, with an emphasis on gene delivery methods and models, scaffold biomaterials, preclinical results, and future directions.

Keywords: Bone defect; Bone loss; Mesenchymal stem cell; Regional gene therapy; Scaffold; Tissue engineering.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources