Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Sep 15;48(18):5101-5.

Effect of hyperthermia on cis-diamminedichloroplatinum(II) (rhodamine 123)2[tetrachloroplatinum(II)] in a human squamous cell carcinoma line and a cis-diamminedichloroplatinum(II)-resistant subline

Affiliations
  • PMID: 3409235

Effect of hyperthermia on cis-diamminedichloroplatinum(II) (rhodamine 123)2[tetrachloroplatinum(II)] in a human squamous cell carcinoma line and a cis-diamminedichloroplatinum(II)-resistant subline

T S Herman et al. Cancer Res. .

Abstract

The effect of concomitant hyperthermia on the cytotoxicities of cis-diamminedichloroplatinum(II) (CDDP), a newly synthesized drug, Pt(Rh-123)2, and its chemical components, K2PtCl4 and rhodamine 123, was examined in vitro in a squamous cell tumor line of human origin (SCC-25) and in a CDDP-resistant subline (SCC-25/CP). No difference in the cytotoxicity of hyperthermia alone was observed between these cell lines. The dose-dependent cytotoxicities of 1-h exposures to CDDP and Pt(Rh-123)2 were markedly increased at 42 degrees C and 43 degrees C in comparison to 37 degrees C, and this effect was of the same magnitude in both cell lines (enhancements of approximately 1.5 logs at 42 degrees C and 2.5 logs at 43 degrees C for CDDP and 1.5 logs at 42 degrees C and greater than 3 logs at 43 degrees C for Pt(Rh-123)2). The use of hyperthermia with CDDP, however, did not lower survivals in the SCC-25/CP cells even to the levels seen in the parent line at 37 degrees C. The cytotoxicities of K2PtCl4 and rhodamine 123 were essentially the same in the CDDP-sensitive and -resistant cells at all temperatures tested. The magnitude of the temperature effect was significantly greater for Pt(Rh-123)2 than for its chemical components. No significant effect on CDDP or Pt(Rh-123)2 accumulation was observed at 42, 43, 44 or 45 degrees C in either cell line. DNA lesions, measured by alkaline elution, were significantly enhanced for CDDP in the SCC-25 cells at 42 degrees C. These results suggest that treatment with hyperthermia and either CDDP or Pt(Rh-123)2 should result in supraadditive anti-tumor effects, although the efficacy of CDDP plus hyperthermia will be significantly less once resistance to CDDP has developed. Since resistance to CDDP does not imply cross-resistance to Pt(Rh-123)2, and since the effect of hyperthermia is somewhat greater for Pt(Rh-123)2 than for CDDP at 43 degrees C, Pt(Rh-123)2 may be more selectively toxic to tumor cells when used with local hyperthermia versus normal cells outside the treated area, especially if resistance to CDDP has already developed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources