Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 23;362(2):295-301.
doi: 10.1002/adsc.201900816. Epub 2019 Sep 6.

Enantioselective Kinetic Resolution/Desymmetrization of Para-Quinols: A Case Study in Boronic-Acid-Directed Phosphoric Acid Catalysis

Affiliations

Enantioselective Kinetic Resolution/Desymmetrization of Para-Quinols: A Case Study in Boronic-Acid-Directed Phosphoric Acid Catalysis

Banruo Huang et al. Adv Synth Catal. .

Abstract

A chiral phosphoric acid-catalyzed kinetic resolution and desymmetrization of para-quinols operating via oxa-Michael addition was developed and subsequently subjected to mechanistic study. Good to excellent s-factors/enantioselectivities were obtained over a broad range of substrates. Kinetic studies were performed, and DFT studies favor a hydrogen bonding activation mode. The mechanistic studies provide insights to previously reported chiral anion phase transfer reactions involving chiral phosphate catalysts in combination with boronic acids.

Keywords: asymmetric catalysis; chiral phosphoric acid; directed reactivity; kinetics; oxa-Michael addition; reaction mechanisms.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
A) Boronic acid monoester as an in stiu directing group for CAPT enantioselective fluorination of allylic alcohols (CPA=chiral phosphoric acid); B) Oxa-Michael addition of boronic acid monoester promoted by push/pull-type catalyst; C) Kinetic resolution of para-quinols via complexation of in situ directing group and phosphate.
Figure 2.
Figure 2.. A)
Initial rate-(R)-TRIP catalyst loading plot; B) Reaction plot of [4a] under saturation of 3e.
Scheme 1.
Scheme 1.
Separate-pot kinetic isotope effect.
Scheme 2.
Scheme 2.
Proposed mechanism with calculated transition state.

Similar articles

Cited by

References

    1. Rauniyar V, Lackner AD, Hamilton GL, Toste FD, Science 2011, 334, 1681–1684; - PubMed
    2. Shunatona HP, Früh N, Wang Y-M, Rauniyar V, Toste FD, Angew. Chem. Int. Ed 2013, 52, 7724–7727; - PubMed
    3. Angew. Chem 2013, 125, 7878–7881;
    4. Lackner AD, Samant AV, Toste FD, J. Am. Chem. Soc 2013, 135, 14090–14093; - PMC - PubMed
    5. Phipps RJ, Hiramatsu K, Toste FD,J. Am. Chem. Soc 2012, 134, 8376–8379; - PubMed
    6. Phipps RJ, Toste FD, J. Am. Chem. Soc 2013, 135, 1268– 1271; - PubMed
    7. Neel AJ, Hehn JP, Tripet PF, Toste FD, J. Am. Chem. Soc 2013, 135, 14044–14047; - PMC - PubMed
    8. Wang Y-M, Wu J, Hoong C, Rauniyar V, Toste FD, J. Am. Chem. Soc 2012, 134, 12928–12931; - PubMed
    9. Wu J, Wang Y-M, Drljevic A, Rauniyar V, Phipps RJ, Toste FD, Proc. Natl. Acad. Sci. USA 2013, 110, 13729–13733; - PMC - PubMed
    10. Yang X, Phipps RJ, Toste FD, J. Am. Chem. Soc 2014, 136, 5225–5228; - PMC - PubMed
    11. Nelson HM, Reisberg SH, Shunatona HP, Patel JS, Toste FD, Angew. Chem. Int. Ed 2014, 53, 5600–5603; - PMC - PubMed
    12. Angew. Chem 2014, 126, 5706–5709;
    13. Nelson HM, Patel JS, Shunatona HP, Toste FD, Chem. Sci 2015, 6, 170–173; - PMC - PubMed
    14. Nelson HM, Williams BD, Miró J, Toste FD, J. Am. Chem. Soc 2015, 137, 3213–3216; - PMC - PubMed
    15. Milo A, Neel AJ, Toste FD, Sigman MS, Science 2015, 347, 737–743. - PMC - PubMed
    1. For other recent reports on CAPT catalysis, see:

    2. Shen Z, Pan X, Lai Y, Hu J, Wan X, Li X, Zhang H, Xie W, Chem. Sci 2015, 6, 6986–6990; - PMC - PubMed
    3. Romanov-Michailidis F, Guénée L, Alexakis A, Angew. Chem. Int. Ed 2013, 52, 9266–9270; - PubMed
    4. Angew. Chem 2013, 125, 9436–9440;
    5. Xie W, Jiang G, Liu H, Hu J, Pan X,Zhang H, Wan X, Lai Y, Ma D, Angew. Chem. Int. Ed 2013, 52, 12924–12927; - PubMed
    6. Angew. Chem 2013, 125, 13162–13165;
    7. Yang Z, He Y, Toste FD, J. Am. Chem. Soc 2016, 138, 9775–9778; - PMC - PubMed
    8. Yamamoto E,Hilton MJ, Orlandi M, Saini V, Toste FD, Sigman MS, J. Am. Chem. Soc 2016, 138, 15877–15880; - PMC - PubMed
    9. Avila CM, Patel JS, Reddi Y, Saito M, Nelson HM, Shunatona HP, Sigman MS, Sunoj RB,Toste FD, Angew. Chem. Int. Ed 2017, 56, 5806–5811; - PMC - PubMed
    10. Angew. Chem 2017, 129, 5900–5905;
    11. Biswas S, Kubota K, Orlandi M, Turberg M, Miles DH, Sigman MS, Toste FD, Angew. Chem. Int. Ed 2018, 57, 589–593; - PMC - PubMed
    12. Angew. Chem 2018, 130, 598–602;
    13. Ye B,Zhao J, Zhao K, McKenna JM, Toste FD, J. Am. Chem. Soc 2018, 140, 8350–8356; - PMC - PubMed
    14. Coelho JAS, Matsumoto A, Orlandi M, Hilton MJ, Sigman MS,Toste FD, Chem. Sci 2018, 9, 7153–7158. - PMC - PubMed
    1. Zi W, Wang Y-M, Toste FD, J. Am. Chem. Soc 2014, 136, 12864–12867. - PMC - PubMed
    1. Li DR, Murugan A Falck AJR, J. Am. Chem. Soc 2008, 130, 46–48. - PMC - PubMed
    1. Neel AJ, Milo A, Sigman MS, Toste FD, J. Am. Chem. Soc 2016, 138, 3863–3875. - PMC - PubMed