Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 19:12:660965.
doi: 10.3389/fphar.2021.660965. eCollection 2021.

Pharmacogenetic Associations Between Atazanavir/ UGT1A1*28 and Efavirenz/rs3745274 (CYP2B6) Account for Specific Adverse Reactions in Chilean Patients Undergoing Antiretroviral Therapy

Affiliations

Pharmacogenetic Associations Between Atazanavir/ UGT1A1*28 and Efavirenz/rs3745274 (CYP2B6) Account for Specific Adverse Reactions in Chilean Patients Undergoing Antiretroviral Therapy

Daniela Poblete et al. Front Pharmacol. .

Abstract

Background: Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor, and atazanavir (ATV), a protease inhibitor, are drugs widely used in antiretroviral therapy (ART) for people living with HIV. These drugs have shown high interindividual variability in adverse drug reactions (ADRs). UGT1A1*28 and CYP2B6 c.516G>T have been proposed to be related with higher toxicity by ATV and EFV, respectively. Objective: To study the association between genetic polymorphisms and ADRs related to EFV or ATV in patients living with HIV treated at a public hospital in Chile. Methods: Epidemiologic, case-control, retrospective, observational study in 67 adult patients under EFV or ATV treatment was conducted, in the San Juan de Dios Hospital. Data were obtained from patients' medical records. Genotype analyses were performed using rtPCR for rs887829 (indirect identification of UGT1A1*28 allele) and rs3745274 (CYP2B6 c.516G>T), with TaqMan® probes. The association analyses were performed with univariate logistic regression between genetic variants using three inheritance models (codominant, recessive, and dominant). Results: In ATV-treated patients, hyperbilirubinemia (total bilirubin >1.2 mg/dl) had the main incidence (61.11%), and moderate and severe hyperbilirubinemia (total bilirubin >1.9 mg/dl) were statistically associated with UGT1A1*28 in recessive and codominant inheritance models (OR = 16.33, p = 0.028 and OR = 10.82, p = 0.036, respectively). On the other hand, in EFV-treated patients adverse reactions associated with CNS toxicity reached 34.21%. In this respect, nightmares showed significant association with CYP2B6 c.516G>T, in codominant and recessive inheritance models (OR = 12.00, p = 0.031 and OR = 7.14, p = 0.042, respectively). Grouped CNS ADRs (nightmares, insomnia, anxiety, and suicide attempt) also showed a statistically significant association with CYP2B6 c.516G > T in the codominant and recessive models (OR = 30.00, p = 0.011 and OR = 14.99, p = 0.021, respectively). Conclusion: Our findings suggest that after treatment with ATV or EFV, UGT1A1*28 and CYP2B6 c.516G>T influence the appearance of moderate-to-severe hyperbilirubinemia and CNS toxicity, respectively. However, larger prospective studies will be necessary to validate these associations in our population. Without a doubt, improving adherence in patients living with HIV is a critical issue to the success of therapy. Hence, validating and applying international pharmacogenetic recommendations in Latin American countries would improve the precision of ART: a fundamental aspect to achieve the 95-95-95 treatment target proposed by UNAIDS.

Keywords: ADRs; CYP2B6; HIV; UGT1A1; antiretroviral; atazanavir; efavirenz; pharmacogenetic.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Similar articles

Cited by

References

    1. Atasilp C., Chansriwong P., Sirachainan E., Reungwetwattana T., Sirilerttrakul S., Chamnanphon M., et al. (2020). Effect of Drug Metabolizing Enzymes and Transporters in Thai Colorectal Cancer Patients Treated with Irinotecan-Based Chemotherapy. Scientific Rep. 10 (1), 1–10. 10.1038/s41598-020-70351-0 - DOI - PMC - PubMed
    1. Bernal Ortiz F., Vásquez P., Giadalah C., Rodríguez L., Villagrán A. (2013). Incidencia de reacciones adversas a medicamentos en pacientes que inician o cambian terapia anti-retroviral. Revista Chilena de Infectologia 30 (5), 507–512. 10.4067/s0716-10182013000500007 - DOI - PubMed
    1. Bosma P. J., Chowdhury J. R., Bakker C., Gantla S., de Boer A., Oostra B. A., et al. (1995). The Genetic Basis of the Reduced Expression of Bilirubin UDP-Glucuronosyltransferase 1 in Gilbert’s Syndrome. New Engl. J. Med. 333 (18), 1171–1175. 10.1056/nejm199511023331802 - DOI - PubMed
    1. Bosma P. J., Seppen J., Goldhoorn B., Bakker C., Oude Elferink R. P. J., Chowdhury J. R., et al. (1994). Bilirubin UDP-Glucuronosyltransferase 1 Is the Only Relevant Bilirubin Glucuronidating Isoform in Man. J. Biol. Chem. 269 (27), 17960–17964. 10.1016/s0021-9258(17)32403-1 - DOI - PubMed
    1. Carr D. F., la Porte C., Pirmohamed M., Owen A., Cortes C. P. (2010). Haplotype Structure of CYP2B6 and Association with Plasma Efavirenz Concentrations in a Chilean HIV Cohort. J. Antimicrob. Chemother. 65 (9), 1889–1893. 10.1093/jac/dkq260 - DOI - PMC - PubMed