Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 19:12:681911.
doi: 10.3389/fmicb.2021.681911. eCollection 2021.

Effect of Temperature on Metronidazole Resistance in Helicobacter pylori

Affiliations

Effect of Temperature on Metronidazole Resistance in Helicobacter pylori

Meiliang Gong et al. Front Microbiol. .

Abstract

Efficacy of Helicobacter pylori (H. pylori) eradication therapy has declined due to rapid rises in antibiotic resistance. We investigated how increased temperature affected H. pylori (NCTC 11637) growth and its sensitivity to metronidazole in vitro. We performed transcriptomic profiling using RNA-sequencing to identify differentially expressed genes (DEGs) associated with increased temperature. Transcriptional pathways involved in temperature-driven metronidazole resistance changes were analyzed through bioinformatic and literature curation approaches. We showed that H. pylori growth was inhibited at 41°C and inhibition was more apparent with prolonged incubation. Resistance to metronidazole was also reduced-minimum inhibitory concentration for metronidazole decreased from > 256 μg/ml at 37°C to 8 μg/ml at 41°C after culturing for 3 days. RNA-sequencing results, which were highly concordant within treatment conditions, revealed more than one third of genes (583/1,552) to be differentially expressed at increased temperatures with similar proportions up and down-regulated. Quantitative real-time PCR validation for 8 out of 10 DEGs tested gave consistent direction in gene expression changes. We found enrichment for redox and oxygen radical pathways, highlighting a mechanistic pathway driving temperature-related metronidazole resistance. Independent literature review of published genes associated with metronidazole resistance revealed 46 gene candidates, 21 of which showed differential expression and 7 out of 9 DEGs associated with "redox" resistance pathways. Sanger sequencing did not detect any changes in genetic sequences for known resistance genes rdxA, frxA nor fdxB. Our findings suggest that temperature increase can inhibit the growth and reduce H. pylori resistance to metronidazole. Redox pathways are possible potential drivers in metronidazole resistance change induced by temperature. Our study provides insight into potential novel approaches in treating antibiotic resistant H. pylori.

Keywords: Helicobacter pylori; antibiotic resistance; metronidazole; temperature; transcriptomics.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
(A) Growth inhibition of H. pylori at different temperature conditions. (B) Changes in metronidazole susceptibility at different temperature conditions.
FIGURE 2
FIGURE 2
Differentially expressed genes (DEGs) by RNA-seq. (A) Pearson’s correlation heatmap of expression of all mapped genes (B) Hierarchical clustered heat map of significantly differentially expressed genes (583). (C) Volcano plot displaying DEGs. The vertical axis corresponds to the q-value, the horizontal axis displays the log2 fold-change. The red dots represent the up-regulated expressed transcripts (292), the green dots represent the down-regulated transcripts (291). Vertical and horizontal dashed lines indicate absolute log2 fold-change = 1 and adjusted p = 0.05, respectively.
FIGURE 3
FIGURE 3
Barplot showing log2 fold-changes at incubation of 41°C for 3 days compared to 37°C using RNA-Seq and qRT-PCR methods for 10 selected DEGs. Error bars indicate standard deviations from the mean. Genes ordered by RNA-Seq log2 fold-changes.

Similar articles

Cited by

References

    1. Alba C., Blanco A., Alarcon T. (2017). Antibiotic resistance in Helicobacter pylori. Curr. Opin. Infect. Dis. 30 489–497. 10.1097/QCO.0000000000000396 - DOI - PubMed
    1. Anders S., Pyl P. T., Huber W. (2015). HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31 166–169. 10.1093/bioinformatics/btu638 - DOI - PMC - PubMed
    1. Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 - DOI - PMC - PubMed
    1. Boyanova L., Hadzhiyski P., Kandilarov N., Markovska R., Mitov I. (2019). Multidrug resistance in Helicobacter pylori: current state and future directions. Expert. Rev. Clin. Pharmacol. 12 909–915. 10.1080/17512433.2019.1654858 - DOI - PubMed
    1. Cederbrant G., Kahlmeter G., Ljungh A. (1992). Proposed mechanism for metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 29 115–120. 10.1093/jac/29.2.115 - DOI - PubMed

LinkOut - more resources