Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 17;11(25):6431-6435.
doi: 10.1039/d0sc00588f.

In situ Raman study of the photoinduced behavior of dye molecules on TiO2(hkl) single crystal surfaces

Affiliations

In situ Raman study of the photoinduced behavior of dye molecules on TiO2(hkl) single crystal surfaces

Sheng-Pei Zhang et al. Chem Sci. .

Abstract

In dye-sensitized solar cells (DSSCs), the TiO2/dye interface significantly affects photovoltaic performance. However, the adsorption and photoinduced behavior of dye molecules on the TiO2 substrate remains unclear. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used to study the adsorption and photoinduced behavior of dye (N719) molecules on different TiO2(hkl) surfaces. On TiO2(001) and TiO2(110) surfaces, the in situ SHINERS and mass spectrometry results indicate S[double bond, length as m-dash]C bond cleavage in the anchoring groups of adsorbed N719, whereas negligible bond cleavage occurs on the TiO2(111) surface. Furthermore, DFT calculations show the stability of the S[double bond, length as m-dash]C anchoring group on three TiO2(hkl) surfaces in the order TiO2(001) < TiO2(110) < TiO2(111), which correlated well with the observed photocatalytic activities. This work reveals the photoactivity of different TiO2(hkl) surface structures and can help with the rational design of DSSCs. Thus, this strategy can be applied to real-time probing of photoinduced processes on semiconductor single crystal surfaces.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1. (a) Schematic diagram of using a SHINERS nanoantenna to study the photoinduced reaction of N719 illuminated with two lasers on TiO2. The inset shows electron transfer from the 405 nm laser excited N719 molecules to the TiO2 single crystal surface and the 638 nm laser used to detect the changes in excited the molecules. (b) TEM image of 55 nm Au@2 nm SiO2 SHINs. (c) 3D-FDTD simulation of the enhancement hotspot of a SHIN dimer with a nanogap of 2 nm on rutile TiO2.
Fig. 2
Fig. 2. (a) SHINER spectra of rutile TiO2(001), TiO2(110), and TiO2(111) surfaces in acetonitrile without and (b) with N719 molecules adsorbed.
Fig. 3
Fig. 3. (a) SHINER Spectra of N719 adsorbed at TiO2(001) in acetonitrile under 405 nm laser illumination, spectra collected every 4 minutes. (b) Plot of changes in significant N719 (blue lines and points) and TiO2 (black line and points) spectral peak intensities with time. (c) Mass spectra of a 5 × 10−4 M N719 ethanol solution containing TiO2(001) under 405 nm laser illumination after 0 h and 36 h, and without TiO2(001) after 36 hours. (d) Schematic of the optimized structures of the Ph–NCS group and S atom adsorbed on rutile TiO2(001).
Fig. 4
Fig. 4. (a) SHINER Spectra of N719 adsorbed on a rutile TiO2(110) surface with 405 nm laser illumination. The right shows the DFT simulated optimized structures of the Ph–NCS group (top) and S atom (below) adsorbed on rutile TiO2(110). (b) SHINER Spectra of N719 molecules adsorbed on a rutile TiO2(111) surface with 405 nm laser illumination. Spectra were collected every 4 minutes. The right shows the DFT simulated optimized structures of the Ph–NCS group (top) and S atom (below) on rutile TiO2(111).

References

    1. O'Regan B. Grätzel M. Nature. 1991;353:737. doi: 10.1038/353737a0. - DOI
    2. Parisi M. L. Maranghi S. Basosi R. Renewable Sustainable Energy Rev. 2014;39:124. doi: 10.1016/j.rser.2014.07.079. - DOI
    3. Fakharuddin A. Jose R. Brown T. M. Fabregat-Santiago F. Bisquert J. Energy Environ. Sci. 2014;7:3952. doi: 10.1039/C4EE01724B. - DOI
    4. Hagfeldt A. Boschloo G. Sun L. Kloo L. Pettersson H. Chem. Rev. 2010;110:6595. doi: 10.1021/cr900356p. - DOI - PubMed
    1. Green M. A. Hishikawa Y. Dunlop E. D. Levi D. H. Hohl-Ebinger J. Ho-Baillie A. W. Y. Prog. Photovoltaics Res. Appl. 2018;26:659. doi: 10.1002/pip.3035. - DOI
    1. Shakeel Ahmad M. Pandey A. K. Abd Rahim N. Renewable Sustainable Energy Rev. 2017;77:89. doi: 10.1016/j.rser.2017.03.129. - DOI
    1. Nazeeruddin M. K. Humphry-Baker R. Liska P. Grätzel M. J. Phys. Chem. B. 2003;107:8981. doi: 10.1021/jp022656f. - DOI
    2. Takeda N. Parkinson B. A. J. Am. Chem. Soc. 2003;125:5559. doi: 10.1021/ja0278483. - DOI - PubMed
    3. Zuo Q. Q. Feng Y. L. Chen S. Qiu Z. Xie L. Q. Xiao Z. Y. Yang Z. L. Mao B. W. Tian Z. Q. J. Phys. Chem. C. 2015;119:18396. doi: 10.1021/acs.jpcc.5b05318. - DOI
    4. Xie L. Q. Ding D. Zhang M. Chen S. Qiu Z. Yan J. W. Yang Z. L. Chen M. S. Mao B. W. Tian Z. Q. J. Phys. Chem. C. 2016;120:22500. doi: 10.1021/acs.jpcc.6b07763. - DOI
    1. Nour-Mohhamadi F. Nguyen S. D. Boschloo G. Hagfeldt A. Lund T. J. Phys. Chem. B. 2005;109:22413. doi: 10.1021/jp052792v. - DOI - PubMed