Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 24;11(25):6521-6526.
doi: 10.1039/d0sc01260b.

Late-stage C(sp2)-H and C(sp3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling

Affiliations

Late-stage C(sp2)-H and C(sp3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling

Jun Wu et al. Chem Sci. .

Abstract

C(sp3)-H and C(sp2)-H glycosylations of structurally complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed peptide-saccharide conjugation provided modular access to structurally complex C-alkyl glycoamino acids, glycopeptides and C-aryl glycosides, while enabling the assembly of fluorescent-labeled glycoamino acids. The C-H activation approach represents an expedient and efficient strategy for peptide late-stage diversification in a programmable as well as chemo-, regio-, and diastereo-selective fashion.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (a) Selected C-aryl glycosides and glycopeptides. (b) C(sp3)–H glycosylation of labeled amino acids and peptides.
Scheme 1
Scheme 1. Scope of glycosylation with TAM and AQ as auxiliaries. (a) 100 °C.
Scheme 2
Scheme 2. Scope of C(sp2)–H glycosylation to C-aryl glycosides.
Scheme 3
Scheme 3. Scope of glycosylation of terminal peptides and hybrids.
Fig. 2
Fig. 2. H/D exchange and KIE experiments.
Fig. 3
Fig. 3. Calculated Gibbs free energy profiles for the oxidative addition and reductive elimination steps in kcal mol−1 at the ωB97X-D/6-311++G(d,p), SDD(Pd, I, Ag) + SMD(1,4-dioxane)//ωB97X-D/6-31G(d), LANL2DZ(Pd, I, Ag) level of theory.
Fig. 4
Fig. 4. The 3D structures and the non-covalent interactions visualized through NCI-plots of the transition state TS1–2 (strong and weak attractive interactions are given in blue and green, respectively, while red corresponds to strong repulsive interactions).
Scheme 4
Scheme 4. Scope of glycosylation of terminal peptides.
Scheme 5
Scheme 5. Scope of BODIPY labeled glycoamino acids.

References

    1. deGruyter J. N. Malins L. R. Baran P. S. Biochemistry. 2017;56:3863–3873. doi: 10.1021/acs.biochem.7b00536. - DOI - PMC - PubMed
    2. Krasnova L. Wong C.-H. Annu. Rev. Biochem. 2016;85:599–630. doi: 10.1146/annurev-biochem-060614-034420. - DOI - PubMed
    3. Danishefsky S. J. Allen J. R. Angew. Chem., Int. Ed. 2000;39:836–863. doi: 10.1002/(SICI)1521-3773(20000303)39:5<836::AID-ANIE836>3.0.CO;2-I. - DOI - PubMed
    1. Lepenies B. Seeberger P. H. Nat. Biotechnol. 2014;32:443–445. doi: 10.1038/nbt.2893. - DOI - PubMed
    2. Werdelin O. Meldal M. Jensen T. Proc. Natl. Acad. Sci. U. S. A. 2002;99:9611–9613. doi: 10.1073/pnas.152345899. - DOI - PMC - PubMed
    3. Varki A. Glycobiology. 1993;3:97–130. doi: 10.1093/glycob/3.2.97. - DOI - PMC - PubMed
    4. Sears P. Wong C. H. Cell. Mol. Life Sci. 1998;54:223–252. doi: 10.1007/s000180050146. - DOI - PMC - PubMed
    5. Wong C.-H. J. Org. Chem. 2005;70:4219–4225. doi: 10.1021/jo050278f. - DOI - PubMed
    1. Hecht M.-L. Stallforth P. Silva D. V. Adibekian A. Seeberger P. H. Curr. Opin. Chem. Biol. 2009;13:354–359. doi: 10.1016/j.cbpa.2009.05.127. - DOI - PubMed
    1. Seeberger P. H. Werz D. B. Nature. 2007;446:1046–1051. doi: 10.1038/nature05819. - DOI - PubMed
    2. Koester D. C. Holkenbrink A. Werz D. B. Synthesis. 2010;2010:3217–3242. doi: 10.1055/s-0030-1258228. - DOI
    1. Payne R. J. Wong C.-H. Chem. Commun. 2010;46:21–43. doi: 10.1039/B913845E. - DOI - PubMed
    2. McKay M. J. Nguyen H. M. ACS Catal. 2012;2:1563–1595. doi: 10.1021/cs3002513. - DOI - PMC - PubMed
    3. Bonache M. A. Nuti F. Le Chevalier Isaad A. Real-Fernández F. Chelli M. Rovero P. Papini A. M. Tetrahedron Lett. 2009;50:4151–4153. doi: 10.1016/j.tetlet.2009.04.124. - DOI
    4. Pratt M. R. Bertozzi C. R. Chem. Soc. Rev. 2005;34:58–68. doi: 10.1039/B400593G. - DOI - PubMed
    5. Guo Z. Shao N. Med. Res. Rev. 2005;25:655–678. doi: 10.1002/med.20033. - DOI - PubMed
    6. Wang B. Liu Y. Jiao R. Feng Y. Li Q. Chen C. Liu L. He G. Chen G. J. Am. Chem. Soc. 2016;138:3926–3932. doi: 10.1021/jacs.6b01384. - DOI - PubMed
    7. Herzner H. Reipen T. Schultz M. Kunz H. Chem. Rev. 2000;100:4495–4538. doi: 10.1021/cr990308c. - DOI - PubMed
    8. Rodriguez J. O'Neill S. Walczak M. A. Nat. Prod. Rep. 2018;35:220–229. doi: 10.1039/C7NP00050B. - DOI - PubMed
    9. Gamblin D. P. Scanlan E. M. Davis B. G. Chem. Rev. 2009;109:131–163. doi: 10.1021/cr078291i. - DOI - PubMed
    10. Dai Y. Tian B. Chen H. Zhang Q. ACS Catal. 2019;9:2909–2915. doi: 10.1021/acscatal.9b00336. - DOI