Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 8;11(30):7950-7956.
doi: 10.1039/d0sc02054k.

Nickel-catalyzed three-component olefin reductive dicarbofunctionalization to access alkylborates

Affiliations

Nickel-catalyzed three-component olefin reductive dicarbofunctionalization to access alkylborates

Xiao-Xu Wang et al. Chem Sci. .

Abstract

We report a three-component olefin reductive dicarbofunctionalization for constructing alkylborates, specifically, nickel-catalyzed reductive dialkylation and alkylarylation of vinyl boronates with a variety of alkyl bromides and aryl iodides. This reaction exhibits good coupling efficiency and excellent functional group compatibility, providing convenient access to the late-stage modification of complex natural products and drug molecules. Combined with alkylborate transformations, this reaction could also find applications in the modular and convergent synthesis of complex compounds.

PubMed Disclaimer

Conflict of interest statement

There is no conflict of interest to report.

Figures

Scheme 1
Scheme 1. Dicarbofunctionalization of vinyl boronates to access alkylborates. B2pin2 = bis(pinacolato)diboron. B2neop2 = bis(neopentyl glycolato)diboron. Tf = triflyl. Nu = nucleophile. E = electrophile. w = with. w/o = without. PC = photoredox catalysis. Ar = aryl. Alk = alkyl.
Scheme 2
Scheme 2. Substrate scope of primary alkyl bromides. Standard conditions: as shown in Table 1, entry 1, 0.2 mmol scale. Isolated yield. a The product was isolated after the oxidization of the corresponding alkylborate. Isolated yield. b Nuclear magnetic resonance (NMR) yield for the corresponding alkylborate. Dibromomethane was used as an internal standard.
Scheme 3
Scheme 3. Substrate scope of tertiary alkyl bromides. Standard conditions: as shown in Table 1, entry 1, 0.2 mmol scale. Isolated yield. PMP = p-methoxyphenyl.
Scheme 4
Scheme 4. Substrate scope of olefin reductive alkylarylation. Conditions: as shown in Table 1, entry 1, without NaI, 0.2 mmol scale. Isolated yield.
Scheme 5
Scheme 5. Synthetic applications. Standard conditions: as shown in Table 1, entry 1. Isolated yield. See the ESI for more details. NBS = N-bromosuccinimide. NIS = N-iodosuccinimide.
Scheme 6
Scheme 6. Mechanistic probes. Standard conditions: as shown in Table 1, entry 1, 0.2 mmol scale. Isolated yield. a GC yield. 4,4′-Dimethoxybenzophenone was used as an internal standard. See the ESI for more details. TDAE = tetrakis(dimethylamino)ethylene.
Scheme 7
Scheme 7. Envisioned mechanism. R1 = tert-alkyl. R2 = prim-alkyl or aryl. X = halogen.

References

    1. For selected reviews on olefin dicarbofunctionalization, see:

    2. Dhungana R. K. KC S. Basnet P. Giri R. Chem. Rec. 2018;18:1314. doi: 10.1002/tcr.201700098. - DOI - PubMed
    3. Zhang J.-S. Liu L. Chen T. Han L.-B. Chem.–Asian J. 2018;13:2277. doi: 10.1002/asia.201800647. - DOI - PubMed
    4. Ping Y. Li Y. Zhu J. Kong W. Angew. Chem., Int. Ed. 2019;58:1562. doi: 10.1002/anie.201806088. - DOI - PubMed
    5. Giri R. KC S. J. Org. Chem. 2018;83:3013. doi: 10.1021/acs.joc.7b03128. - DOI - PubMed
    1. For selected examples on olefin dicarbofunctionalization, see:

    2. Urkalan K. B. Sigman M. S. Angew. Chem., Int. Ed. 2009;48:3146. doi: 10.1002/anie.200900218. - DOI - PMC - PubMed
    3. Trejos A. Fardost A. Yahiaoui S. Larhed M. Chem. Commun. 2009:7587. doi: 10.1039/B918358B. - DOI - PubMed
    4. McCammant M. S. Liao L. Sigman M. S. J. Am. Chem. Soc. 2013;135:4167. doi: 10.1021/ja3110544. - DOI - PMC - PubMed
    5. Liu Z. Zeng T. Yang K. S. Engle K. M. J. Am. Chem. Soc. 2016;138:15122. doi: 10.1021/jacs.6b09170. - DOI - PubMed
    6. Shrestha B. Basnet P. Dhungana R. K. Kc S. Thapa S. Sears J. M. Giri R. J. Am. Chem. Soc. 2017;139:10653. doi: 10.1021/jacs.7b06340. - DOI - PubMed
    7. Li W. Boon J. K. Zhao Y. Chem. Sci. 2018;9:600. doi: 10.1039/C7SC03149A. - DOI - PMC - PubMed
    8. Derosa J. Tran V. T. Boulous M. N. Chen J. S. Engle K. M. J. Am. Chem. Soc. 2017;139:10657. doi: 10.1021/jacs.7b06567. - DOI - PubMed
    9. Basnet P. Dhungana R. K. Thapa S. Shrestha B. Kc S. Sears J. M. Giri R. J. Am. Chem. Soc. 2018;140:7782. doi: 10.1021/jacs.8b03163. - DOI - PubMed
    10. Cong H. Fu G. C. J. Am. Chem. Soc. 2014;136:3788. doi: 10.1021/ja500706v. - DOI - PMC - PubMed
    11. You W. Brown M. K. J. Am. Chem. Soc. 2015;137:14578. doi: 10.1021/jacs.5b10176. - DOI - PubMed
    12. Walker J. A. Vickerman K. L. Humke J. N. Stanley L. M. J. Am. Chem. Soc. 2017;139:10228. doi: 10.1021/jacs.7b06191. - DOI - PubMed
    13. Qin T. Cornella J. Li C. Malins L. R. Edwards J. T. Kawamura S. Maxwell B. D. Eastgate M. D. Baran P. S. Science. 2016;352:801. doi: 10.1126/science.aaf6123. - DOI - PMC - PubMed
    14. Gu J.-W. Min Q.-Q. Yu L.-C. Zhang X. Angew. Chem., Int. Ed. 2016;55:12270. doi: 10.1002/anie.201606458. - DOI - PubMed
    15. Wu L. Wang F. Wan X. Wang D. Chen P. Liu G. J. Am. Chem. Soc. 2017;139:2904. doi: 10.1021/jacs.6b13299. - DOI - PubMed
    16. Watson M. P. Jacobsen E. N. J. Am. Chem. Soc. 2008;130:12594. doi: 10.1021/ja805094j. - DOI - PMC - PubMed
    17. You W. Brown M. K. J. Am. Chem. Soc. 2014;136:14730. doi: 10.1021/ja509056j. - DOI - PubMed
    18. Zhou L. Li S. Xu B. Ji D. Wu L. Liu Y. Zhang Z.-M. Zhang J. Angew. Chem., Int. Ed. 2020;59:2769. doi: 10.1002/anie.201913367. - DOI - PubMed
    19. Huang D. Olivieri D. Sun Y. Zhang P. Newhouse T. R. J. Am. Chem. Soc. 2019;141:16249. doi: 10.1021/jacs.9b09245. - DOI - PubMed
    20. Zhang Z.-M. Xu B. Wu L. Wu Y. Qian Y. Zhou L. Liu Y. Zhang J. Angew. Chem., Int. Ed. 2019;58:14653. doi: 10.1002/anie.201907840. - DOI - PubMed
    21. Koy M. Bellotti P. Katzenburg F. Daniliuc C. G. Glorius F. Angew. Chem., Int. Ed. 2020;59:2375. doi: 10.1002/anie.201911012. - DOI - PubMed
    1. For selected examples on olefin reductive dicarbofunctionalization, see:

    2. Anthony D. Lin Q. Baudet J. Diao T. Angew. Chem., Int. Ed. 2019;58:3198. doi: 10.1002/anie.201900228. - DOI - PMC - PubMed
    3. Li J. Luo Y. Cheo H. W. Lan Y. Wu J. Chem. 2019;5:192. doi: 10.1016/j.chempr.2018.10.006. - DOI
    4. Wang K. Ding Z. Zhou Z. Kong W. J. Am. Chem. Soc. 2018;140:12364. doi: 10.1021/jacs.8b08190. - DOI - PubMed
    5. Yan C.-S. Peng Y. Xu X.-B. Wang Y.-W. Chem.–Eur. J. 2012;18:6039. doi: 10.1002/chem.201200190. - DOI - PubMed
    6. Tian Z.-X. Qiao J.-B. Xu G.-L. Pang X. Qi L. Ma W.-Y. Zhao Z.-Z. Duan J. Du Y.-F. Su P. Liu X.-Y. Shu X.-Z. J. Am. Chem. Soc. 2019;141:7637. doi: 10.1021/jacs.9b03863. - DOI - PubMed
    1. Shu W. García-Domínguez A. Quirós M. T. Mondal R. Cárdenas D. J. Nevado C. J. Am. Chem. Soc. 2019;141:13812. doi: 10.1021/jacs.9b02973. - DOI - PubMed
    2. García-Domínguez A. Li Z. Nevado C. J. Am. Chem. Soc. 2017;139:6835. doi: 10.1021/jacs.7b03195. - DOI - PubMed
    1. Zhao X. Tu H.-Y. Guo L. Zhu S. Qing F.-L. Chu L. Nat. Commun. 2018;9:3488. doi: 10.1038/s41467-018-05951-6. - DOI - PMC - PubMed