Molecular latent space simulators
- PMID: 34094212
- PMCID: PMC8162036
- DOI: 10.1039/d0sc03635h
Molecular latent space simulators
Abstract
Small integration time steps limit molecular dynamics (MD) simulations to millisecond time scales. Markov state models (MSMs) and equation-free approaches learn low-dimensional kinetic models from MD simulation data by performing configurational or dynamical coarse-graining of the state space. The learned kinetic models enable the efficient generation of dynamical trajectories over vastly longer time scales than are accessible by MD, but the discretization of configurational space and/or absence of a means to reconstruct molecular configurations precludes the generation of continuous atomistic molecular trajectories. We propose latent space simulators (LSS) to learn kinetic models for continuous atomistic simulation trajectories by training three deep learning networks to (i) learn the slow collective variables of the molecular system, (ii) propagate the system dynamics within this slow latent space, and (iii) generatively reconstruct molecular configurations. We demonstrate the approach in an application to Trp-cage miniprotein to produce novel ultra-long synthetic folding trajectories that accurately reproduce atomistic molecular structure, thermodynamics, and kinetics at six orders of magnitude lower cost than MD. The dramatically lower cost of trajectory generation enables greatly improved sampling and greatly reduced statistical uncertainties in estimated thermodynamic averages and kinetic rates.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
A. L. F. is a consultant of Evozyne and a co-author of US Provisional Patents 62/853,919 and 62/900,420 and International Patent Application PCT/US2020/035206.
Figures




Similar articles
-
Molecular Latent Space Simulators for Distributed and Multimolecular Trajectories.J Phys Chem A. 2023 Jun 29;127(25):5470-5490. doi: 10.1021/acs.jpca.3c01362. Epub 2023 Jun 14. J Phys Chem A. 2023. PMID: 37314375
-
Tutorial on Molecular Latent Space Simulators (LSSs): Spatially and Temporally Continuous Data-Driven Surrogate Dynamical Models of Molecular Systems.J Phys Chem A. 2024 Nov 28;128(47):10299-10317. doi: 10.1021/acs.jpca.4c05389. Epub 2024 Nov 14. J Phys Chem A. 2024. PMID: 39540914
-
Temporally Coherent Backmapping of Molecular Trajectories From Coarse-Grained to Atomistic Resolution.J Phys Chem A. 2022 Dec 8;126(48):9124-9139. doi: 10.1021/acs.jpca.2c07716. Epub 2022 Nov 23. J Phys Chem A. 2022. PMID: 36417670 Free PMC article.
-
Frontiers in molecular dynamics simulations of DNA.Acc Chem Res. 2012 Feb 21;45(2):196-205. doi: 10.1021/ar2001217. Epub 2011 Aug 10. Acc Chem Res. 2012. PMID: 21830782 Review.
-
How to Run FAST Simulations.Methods Enzymol. 2016;578:213-25. doi: 10.1016/bs.mie.2016.05.032. Epub 2016 Jun 16. Methods Enzymol. 2016. PMID: 27497168 Review.
Cited by
-
Learning molecular dynamics with simple language model built upon long short-term memory neural network.Nat Commun. 2020 Oct 9;11(1):5115. doi: 10.1038/s41467-020-18959-8. Nat Commun. 2020. PMID: 33037228 Free PMC article.
-
Data-driven prediction of αIIbβ3 integrin activation paths using manifold learning and deep generative modeling.Biophys J. 2024 Sep 3;123(17):2716-2729. doi: 10.1016/j.bpj.2023.12.009. Epub 2023 Dec 14. Biophys J. 2024. PMID: 38098231
-
Adaptive Monte Carlo augmented with normalizing flows.Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2109420119. doi: 10.1073/pnas.2109420119. Epub 2022 Mar 2. Proc Natl Acad Sci U S A. 2022. PMID: 35235453 Free PMC article.
-
Accurate prediction of the kinetic sequence of physicochemical states using generative artificial intelligence.Chem Sci. 2025 Apr 10;16(20):8735-8751. doi: 10.1039/d5sc00108k. eCollection 2025 May 21. Chem Sci. 2025. PMID: 40271036 Free PMC article.
-
Bayesian-Inference-Driven Model Parametrization and Model Selection for 2CLJQ Fluid Models.J Chem Inf Model. 2022 Feb 28;62(4):874-889. doi: 10.1021/acs.jcim.1c00829. Epub 2022 Feb 7. J Chem Inf Model. 2022. PMID: 35129974 Free PMC article.
References
-
- Frenkel D. and Smit B., Understanding Molecular Simulation: From algorithms to applications, Academic Press, San Diego, 2002
-
- Shaw D. E., Grossman J. P., Bank J. A., Batson B., Butts J. A., Chao J. C., Deneroff M. M., Dror R. O., Even A., Fenton C. H., Forte A., Gagliardo J., Gill G., Greskamp B., Ho C. R., Ierardi D. J., Iserovich L., Kuskin J. S., Larson R. H., Layman T., Lee L. S., Lerer A. K., Li C., Killebrew D., Mackenzie K. M., Mok S. Y. H., Moraes M. A., Mueller R., Nociolo L. J., Peticolas J. L., Quan T., Ramot D., Salmon J. K., Scarpazza D. P., Ben Schafer U., Siddique N., Snyder C. W., Spengler J., Tang P. T. P., Theobald M., Toma H., Towles B., Vitale B., Wang S. C. and Young C., SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2014, pp. 41–53
-
- Chow E., Rendleman C. A., Bowers K. J., Dror R. O., Hughes D. H., Gullingsrud J., Sacerdoti F. D. and Shaw D. E., Desmond performance on a cluster of multicore processors (DESRES/TR–2008-01), DE Shaw Research Technical Report, 2008
LinkOut - more resources
Full Text Sources