Site-selective aqueous C-H acylation of tyrosine-containing oligopeptides with aldehydes
- PMID: 34094398
- PMCID: PMC8162766
- DOI: 10.1039/d0sc03791e
Site-selective aqueous C-H acylation of tyrosine-containing oligopeptides with aldehydes
Abstract
The development of useful synthetic tools to label amino acids within a peptide framework for the ultimate modification of proteins in a late-stage fashion is a challenging task of utmost importance within chemical biology. Herein, we report the first Pd-catalyzed C-H acylation of a collection of Tyr-containing peptides with aldehydes. This water-compatible tagging technique is distinguished by its site-specificity, scalability and full tolerance of sensitive functional groups. Remarkably, it provides straightforward access to a high number of oligopeptides with altered side-chain topology including mimetics of endomorphin-2 and neuromedin N, thus illustrating its promising perspectives toward the diversification of structurally complex peptides and chemical ligation.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
A patent disclosing the Pd-catalyzed aqueous acylation of Tyr-containing oligopetides has been filed (P202030131, Spain).
Figures
References
-
- Lenci E. Trabocchi A. Chem. Soc. Rev. 2020;49:3262. doi: 10.1039/D0CS00102C. - DOI - PubMed
- Malonis R. J. Lai J. R. Vergnolle O. Chem. Rev. 2020;120:3210. doi: 10.1021/acs.chemrev.9b00472. - DOI - PMC - PubMed
- Lau J. L. Dunn M. K. Bioorg. Med. Chem. 2018;26:2700. doi: 10.1016/j.bmc.2017.06.052. - DOI - PubMed
- Henninot A. Collins J. C. Nuss J. M. J. Med. Chem. 2018;61:1382. doi: 10.1021/acs.jmedchem.7b00318. - DOI - PubMed
-
- deGruyter J. N. Malins L. R. Baran P. S. Biochemistry. 2017;56:3863. doi: 10.1021/acs.biochem.7b00536. - DOI - PMC - PubMed
- Krall N. da Cruz F. P. Boutureira O. Bernardes G. J. L. Nat. Chem. 2016;8:102. doi: 10.1038/nchem.2393. - DOI - PubMed
- Koniev O. Wagner A. Chem. Soc. Rev. 2015;44:5495. doi: 10.1039/C5CS00048C. - DOI - PubMed
- Pelay-Gimeno M. Glas A. Koch O. Grossmann T. N. Angew. Chem., Int. Ed. 2015;54:8896. doi: 10.1002/anie.201412070. - DOI - PMC - PubMed
-
- Ohata J. Martin S. C. Ball Z. T. Angew. Chem., Int. Ed. 2019;58:6176. doi: 10.1002/anie.201807536. - DOI - PubMed
- Isenegger P. G. Davis B. G. J. Am. Chem. Soc. 2019;141:8005. - PMC - PubMed
- Jbara M. Maity S. K. Brik A. Angew. Chem., Int. Ed. 2017;56:10644. doi: 10.1002/anie.201702370. - DOI - PubMed
-
-
For recent reviews, see:
- Guerrero I. Correa A. Asian J. Org. Chem. 2020;9:898. doi: 10.1002/ajoc.202000170. - DOI
- Gruß H. Sewald N. Chem.–Eur. J. 2020;26:5328. doi: 10.1002/chem.201903756. - DOI - PMC - PubMed
- Rivera D. G. Ojeda-Carralero G. M. Reguera L. Van der Eycken E. V. Chem. Soc. Rev. 2020;49:2039. doi: 10.1039/C9CS00366E. - DOI - PubMed
- Bai Z. Wang H. Synlett. 2020;31:199. doi: 10.1055/s-0039-1691495. - DOI
- Bottecchia C. Noël T. Chem.–Eur. J. 2019;25:26. doi: 10.1002/chem.201803074. - DOI - PMC - PubMed
- Wang W. Lorion M. M. Shah J. Kapdi A. R. Ackermann L. Angew. Chem., Int. Ed. 2018;57:14700. doi: 10.1002/anie.201806250. - DOI - PubMed
- Malins L. R. Pept. Sci. 2018;110:e24049. doi: 10.1002/pep2.24049. - DOI
- Lu X. He S.-J. Cheng W.-M. Shi J. Chin. Chem. Lett. 2018;29:1001. doi: 10.1016/j.cclet.2018.05.011. - DOI
- Mondal S. Chowdhury S. Adv. Synth. Catal. 2018;360:1884. doi: 10.1002/adsc.201800011. - DOI
- Malins L. R. Curr. Opin. Chem. Biol. 2018;46:25. doi: 10.1016/j.cbpa.2018.03.019. - DOI - PubMed
- He G. Wang B. Nack W. A. Chen G. Acc. Chem. Res. 2016;49:635. doi: 10.1021/acs.accounts.6b00022. - DOI - PubMed
- Metz A. M. Kozlowski M. C. J. Org. Chem. 2015;80:1. doi: 10.1021/jo502408z. - DOI - PubMed
- Noisier A. F. M. Brimble M. A. Chem. Rev. 2014;114:8775. doi: 10.1021/cr500200x. - DOI - PubMed
-