Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 29;11(42):11554-11561.
doi: 10.1039/d0sc04808a.

Organoborohydride-catalyzed Chichibabin-type C4-position alkylation of pyridines with alkenes assisted by organoboranes

Affiliations

Organoborohydride-catalyzed Chichibabin-type C4-position alkylation of pyridines with alkenes assisted by organoboranes

Ying Wang et al. Chem Sci. .

Abstract

The first NaBEt3H-catalyzed intermolecular Chichibabin-type alkylation of pyridine and its derivatives with alkenes as the latent nucleophiles is presented with the assistance of BEt3, and a series of branched C4-alkylation pyridines, even highly congested all-carbon quaternary center-containing triarylmethanes can be obtained in a regiospecific manner. Therefore, the conventional reliance on high cost and low availability transition metal catalysts, prior formation of N-activated pyridines, organometallic reagents, and extra oxidation operation for the construction of a C-C bond at the C4-position of the pyridines in previous methods are not required. The corresponding mechanism and the key roles of the organoborane were elaborated by the combination of H/D scrambling experiments, 11B NMR studies, intermediate trapping experiments and computational studies. This straightforward and mechanistically distinct organocatalytic technology not only opens a new door for the classical but still far less well-developed Chichibabin-type reaction, but also sets up a new platform for the development of novel C-C bond-forming methods.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Direct C4-position C–C bond-forming of pyridines and Chichibabin-type transformations.
Scheme 2
Scheme 2. Substrate scope of alkenes and pyridines.a,b aReaction conditions for (A) styrenes (0.75 mmol, 1.5 equiv.), pyridines (0.5 mmol), NaBEt3H (0.2 mmol), BEt3 (1.0 mmol) in dry THF (1.0 mL) at 100 °C for 12 hours under a N2 atmosphere; yield was determined by 1H NMR spectroscopy of the crude mixture, using CH2Br2 as the internal standard. bReaction conditions for (B) 1,1-diaryl alkenes (0.75 mmol, 1.5 equiv.), pyridine (0.5 mmol), NaBEt3H (0.15 mmol), BEt3 (1.0 mmol) in dry THF (1.0 mL) at 70 °C for 12 hours under a N2 atmosphere; isolated yields. cUsing NaH instead of NaBEt3H. d24% alkene was recovered. e57% alkene was recovered. fThese reactions were carried out at 140 °C. g50% alkene was recovered.
Scheme 3
Scheme 3. H/D scrambling experiments.
Fig. 1
Fig. 1. Intermediate investigation experiments.
Fig. 2
Fig. 2. Calculated energy profiles of the NaBEt3H-catalyzed alkylation reaction of pyridine with the alkene. (A) Calculated energy profile of pyridine with BEt3. (B) DFT-computed reaction pathway for NaBEt3H-catalysed alkylation of styrene with pyridine. (C) The relative Gibbs energies and structures of different C–B interactions between styrene and 1,1-diphenylethene. (D) DFT-computed reaction pathway for NaBEt3H-catalysed alkylation of diphenylethene with pyridine.
Scheme 4
Scheme 4. Plausible mechanism.

Similar articles

Cited by

References

    1. Daly J. W., Garraffo H. M. and Spande T. F., in Alkaloids: Chemical and Biological Perspectives, ed. W. W. Pelletier, Elsevier, New York, 1999, vol. 13, pp. 92–104
    2. Vitaku E. Smith D. T. Njardarson J. T. J. Med. Chem. 2014;57:10257–10274. doi: 10.1021/jm501100b. - DOI - PubMed
    3. Skrypink Y. G. Doroshenko T. F. Mater. Sci. 1996;32:537–544. doi: 10.1007/BF02539063. - DOI
    4. Leclerc N. Sanaur S. Galmiche L. Mathevet F. Attias A.-J. Fave J.-L. Roussel J. Hapiot P. Lemaître N. Geffroy B. Chem. Mater. 2005;17:502–513. doi: 10.1021/cm040358k. - DOI
    1. For leading reviews, see:

    2. Snieckus V. Chem. Rev. 1990;90:879–933. doi: 10.1021/cr00104a001. - DOI
    3. Gros P. Fort Y. Eur. J. Org. Chem. 2002:3375–3383. doi: 10.1002/1099-0690(200210)2002:20<3375::AID-EJOC3375>3.0.CO;2-X. - DOI
    4. Schlosser M. Mongin F. Chem. Soc. Rev. 2007;36:1161–1172. doi: 10.1039/B706241A. - DOI - PubMed
    5. Gros P. C. Fort Y. Eur. J. Org. Chem. 2009:4199–4209. doi: 10.1002/ejoc.200900324. - DOI
    6. Ahamed M. Todd M. H. Eur. J. Org. Chem. 2010:5935–5942. doi: 10.1002/ejoc.201000877. - DOI
    7. Nakao Y. Synthesis. 2011:3209–3219. doi: 10.1055/s-0030-1260212. - DOI
    8. Zhuo C.-X. Zhang W. You S.-L. Angew. Chem., Int. Ed. 2012;51:12662–12686. doi: 10.1002/anie.201204822. - DOI - PubMed
    9. Bull J. A. Mousseau J. J. Pelletier G. Charette A. B. Chem. Rev. 2012;112:2642–2713. doi: 10.1021/cr200251d. - DOI - PubMed
    10. Ding Q. Zhou X. Fan R. Org. Biomol. Chem. 2014;12:4807–4815. doi: 10.1039/C4OB00371C. - DOI - PubMed
    11. Murakami K. Yamada S. Kaneda T. Itami K. Chem. Rev. 2017;117:9302–9332. doi: 10.1021/acs.chemrev.7b00021. - DOI - PubMed
    1. Jeffrey J. L. Sarpong R. Org. Lett. 2012;14:5400–5403. doi: 10.1021/ol3024117. - DOI - PMC - PubMed
    2. Zhuo F.-F. Xie W.-W. Yang Y.-X. Zhang L. Wang P. Yuan R. Da C.-S. J. Org. Chem. 2013;78:3243–3249. doi: 10.1021/jo400152f. - DOI - PubMed
    1. For recent reviews on the Minisci reaction, see:

    2. Duncton M. A. J. MedChemComm. 2011;2:1135–1161. doi: 10.1039/C1MD00134E. - DOI
    3. Proctor R. S. J. Phipps R. J. Angew. Chem., Int. Ed. 2019;58:13666–13699. doi: 10.1002/anie.201900977. - DOI - PubMed
    4. ; For selected examples, see:

    5. Minisci F. Bernardi R. Bertini F. Galli R. Perchinummo M. Tetrahedron. 1971;27:3575–3579. doi: 10.1016/S0040-4020(01)97768-3. - DOI
    6. Fujiwara Y. Domingo V. Seiple I. B. Gianatassio R. Bel M. D. Baran P. S. J. Am. Chem. Soc. 2011;133:3292–3295. doi: 10.1021/ja111152z. - DOI - PMC - PubMed
    7. Molander G. A. Colombel V. Braz V. A. Org. Lett. 2011;13:1852–1855. doi: 10.1021/ol2003572. - DOI - PMC - PubMed
    8. Nagib D. A. MacMillan D. W. C. Nature. 2011;480:224–228. doi: 10.1038/nature10647. - DOI - PMC - PubMed
    9. Fujiwara Y. Dixon J. A. Hara F. O. Funder E. D. Dixon D. D. Rodriguez R. A. Baxter R. D. Herle B. Sach N. Collins M. R. Ishihara Y. Baran P. S. Nature. 2012;492:95–99. doi: 10.1038/nature11680. - DOI - PMC - PubMed
    10. Antonchick A. P. Burgmann L. Angew. Chem., Int. Ed. 2013;52:3267–3271. doi: 10.1002/anie.201209584. - DOI - PubMed
    11. Garza-Sanchez R. A. Tlahuext-Aca A. Tavakoli G. Glorious F. ACS Catal. 2017;7:4057–4061. doi: 10.1021/acscatal.7b01133. - DOI
    12. Cheng W.-M. Shang R. Fu Y. ACS Catal. 2017;7:907–911. doi: 10.1021/acscatal.6b03215. - DOI
    13. Proctor R. S. J. Davis H. J. Phipps R. J. Science. 2018;360:419–422. doi: 10.1126/science.aar6376. - DOI - PubMed
    1. Selected literature of C2-selectivity, see:

    2. Jordan R. F. Taylor D. F. J. Am. Chem. Soc. 1989;111:778–779. doi: 10.1021/ja00184a081. - DOI
    3. Rodewald S. Jordan R. F. J. Am. Chem. Soc. 1994;116:4491–4492. doi: 10.1021/ja00089a054. - DOI
    4. Murakami M. Hori S. J. Am. Chem. Soc. 2003;125:4720–4721. doi: 10.1021/ja029829z. - DOI - PubMed
    5. Lewis J. C. Bergman R. G. Ellman J. A. J. Am. Chem. Soc. 2007;129:5332–5333. doi: 10.1021/ja070388z. - DOI - PMC - PubMed
    6. Nakao Y. Kanyiva K. S. Hiyama T. J. Am. Chem. Soc. 2008;130:2448–2449. doi: 10.1021/ja710766j. - DOI - PubMed
    7. Berman A. M. Lewis J. C. Bergman R. G. Ellman J. A. J. Am. Chem. Soc. 2008;130:14926–14927. doi: 10.1021/ja8059396. - DOI - PMC - PubMed
    8. Guan B.-T. Hou Z. J. Am. Chem. Soc. 2011;133:18086–18089. doi: 10.1021/ja208129t. - DOI - PubMed
    9. Kaneko H. Nagae H. Tsurugi H. Mashima K. J. Am. Chem. Soc. 2011;133:19626–19629. doi: 10.1021/ja208293h. - DOI - PubMed
    10. Liu B. Huang Y. Lan J. Song F. You J. Chem. Sci. 2013;4:2163–2167. doi: 10.1039/C3SC50348H. - DOI
    11. Johnson D. G. Lynam J. M. Mistry N. S. Slattery J. M. Thatcher R. J. Whitwood A. C. J. Am. Chem. Soc. 2013;135:2222–2234. doi: 10.1021/ja3097256. - DOI - PubMed
    12. Song G. Wylie W. N. O. Hou Z. J. Am. Chem. Soc. 2014;136:12209–12212. doi: 10.1021/ja504995f. - DOI - PubMed
    13. Nagae H. Tsurugi H. Mashima K. J. Am. Chem. Soc. 2015;137:640–643. doi: 10.1021/ja511964k. - DOI - PubMed
    14. Kundu A. Inoue M. Nagae H. Tsurugi H. Mashima K. J. Am. Chem. Soc. 2018;140:7332–7342. doi: 10.1021/jacs.8b03998. - DOI - PubMed